UNIVERSITY OF MUMBAI No. UG/34 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/02 of 2016-17, dated 21st April, 2016 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Zoology at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.31 and that in accordance therewith, the revised syllabus as per the (CBCS) for the S.Y.B.Sc. in Zoology (Sem - III & IV) has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website www.mu.ac.in).

> (Dr. Dinesh Kamble) I/c REGISTRAR

Many

MUMBAI-400 032 72nd June, 2018 To

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.31/05/05/2018

No. UG/ 34 - A of 2018

MUMBAI-400 032 22ndJune, 2018

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Zoology,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

Simafillar

Dr. Seema Pillai VC PRINCIPAL SMT. DEVKIBA MOHANSINHJI CHAUHAN COLLEGE OF COMMERCE & SCIENCE, SILVASSA

main N STRVICE OF r. Dinesh Kamble) REGISTRAR SMT. DEVKIBA MOHANSINHJI CHAUHAN COLLEGE OF COMMERCE & SCIENCE

S. Y. B. Sc. Syllabus Framing Committee

Sr. No.	Name	Address	Status
1	Dr. Anita Jadhav readersmailbox@rediffmail.com	Head & Associate Prof., Department of Zoology, ICL College, Vashi, Navi-Mumbai	I/C Chairperson, BoS in Zoology
2	Mr. Vinayak Dalvie <u>dalvie@gmail.com</u>	Head & Associate Prof., Mithibai College, Vile Parle (W), Mumbai- 56	Chief Coordinator
3	Dr. Gulabrao B. Raje drgbraje@rediffmail.com	Head & Associate Prof., Department of Zoology, D. B. J College, Chiplun, Dist: Ratnagiri	Coordinator
4	Capt. Nilima S. Prabhu nilsprabhu@rediffmail.com	Assistant Prof., Department of Zoology, S.S. &L.S. Patkar College, Goregaon, Mumbai-62	Convenor USZO301& USZO401
5	Dr. Dilip K. Kakavipure dlpkakavipure@gmail.com	Associate Prof., Depsartment of Zoology, BNN College, Bhiwandi, Dist: Thane	Convenor USZO302& USZO402
6	Mr. Venkatesh Hegde <u>drvnhegde@rediffmail.com</u>	Assistant Prof., Department of Zoology, Mithibai College, Vile Parle (W), Mumbai-56	Convenor USZOE303A & USZOE403A (Elective 1)
7	Dr. Surekha Manoj Gupta gupta.surekha@yahoo.com	Assistant Prof., Department of Zoology, G. N. Khalsa College, Matunga, Mumbai-19	Convenor USZOE303B& USZOE403B (Elective 2)
8	Dr. Shaheda Rangoonwala shaheda.rangoonwala@gmail.com	Principal, V. N. College, Murud Janjira, Dist: Raigad	Co-Convenor USZO301 & USZO401
9	Dr. Shashibhal M. Pandey pandey.shashibhal@gmail.com	Assistant Prof., Department of Zoology, CHM College, Ulhasnagar-3	Co-Convenor USZO302 & USZO402
10	Dr, Leena Murlidharan leena.doctor@gmail.com	Associate Prof., Department of Zoology, VKK Menon College, Bhandup (E), Mumbai -42	Co-Convenor USZOE303A & USZOE403A (Elective 1)
11	Dr. Shirley Bless Agwuocha shirley_bless@rediffmail.com	Assistant Prof., Department of Zoology, Thakur College of Science & Com., Kandivali (E)	Co-Convenor USZOE303A & USZOE403A (Elective 1)
12	Dr. Nisar Shaikh nisargmmwc@gmail.com	Principal, DRT's A. E. Kalsekar Degree College, Kausa Mumbra, Dist: Thane -12	Co-Convenor USZOE303B& USZOE403B (Elective 2)
13	Dr. Sushant Mane sushantmane@yahoo.com	Assistant Prof., Department of Zoology, Wilson College, Girgaon, Mumbai-7	Member USZO301 & USZO401
14	Dr. Meena Poonja meenaprasad123@gmail.com	Assistant Prof., Department of Zoology, CHM College, Ulhasnagar-3	Member USZO301 & USZO401
15	Mr. T. V. Bicheesh Balan <u>bicheesh@gmail.com</u>	Assistant Prof., Department of Zoology, Mithibai College, Vile Parle (W), Mumbai-56	Member USZO301 & USZO401

16	Mr. Nandu R. Hedulkar	Head & Assistant Prof.,	Member
	hedulkar@gmail.com	Department of Zoology,	USZO302 & USZO402
	_	Anandibai Raorane College,	
		Vaibhavwadi, Dist: Sindhudurg	
17	Dr. Pratiksha P. Sawant	Associate Prof., Department of	Member
	sawant.pratiksha52@gmail.com	Zoology, S.P.K. College,	USZO302 & USZO402
		Sawantwadi, Dist: Sindhudurg	
18	Dr. Kamran Abbas	Head & Associate Prof.,	Member
	kamranabbas14@gmail.com	Department of Zoology, GMM	USZO302 & USZO402
		College, Bhiwandi, Dist: Thane	
19	S/Lt. (Dr.) Kantilal Hiridas	Assistant Prof., Department of	Member
	Nagare	Zoology, Birla College, Kalyan,	USZOE303A & USZOE403A
	birlasparc11@gmail.com	Dist: Thane -421304	(Elective 1)
20	Mr. Nikhil Disoria	Assistant Prof., Department of	Member
	nikhil.disoria@gmail.com	Zoology, National College,	USZOE303A & USZOE403A
		Bandra (W), Mumbai -50	(Elective 1)
21	Dr. Minakshi Gurav	Assistant Prof., Department of	Member
	minakshi.gurav@ruparel.edu	Zoology, Ruparel College,	USZOE303B& USZOE403B
		Mahim, Mumbai -16	(Elective 2)
22	Dr. Harish T. Babar	Assistant Prof., Department of	Member
	harishbabar@gmail.com	Zoology, D. B. J College, Chiplun,	USZOE303B& USZOE403B
	_	Dist: Ratnagiri- 415605	(Elective 2)

CONTENT

- 1. Preface
- 2. Preamble
- 3. Pedagogy
- 4. Tables of Courses, Topics, Credits and Workload
- 5. Table of unit wise distribution of syllabus
- 6. Theory Syllabus for Semester III (Course codes: USZO301-USZOE303B)
- 7. Practical Syllabus for Semester III (Course codes: USZOP3)
- References and Additional Reading (Course code: USZO301-USZOE303B)
- 9. Theory Syllabus for Semester IV (Course codes: USZO401-USZOE403B)
- 10. Practical Syllabus for Semester IV (Course codes: USZOP4)
- References and Additional Reading (Course code: USZO401-USZOE403B)
- 12. Marking Scheme of Examination (Theory)
- Skeleton Practical Exam Question Papers(Semester III and Semester IV)
- 14. Model Question Bank(Semester III and Semester IV)

PREFACE

Holistic development of students is the main purpose of the curriculum. While this is attempted through prescribing dynamic and updated curricular inputs, the new course that will be effective from the academic year 2018- 2019, will follow the Semester mode. The main aim of the revision of syllabus was to modify it to meet the unique requirements of students, up gradation of knowledge in the subject of zoology and to inculcate the skill of reasoning. The contents of the syllabus have been drawn-up to accommodate the widening horizons of the discipline of Biological Sciences. All possible attempts have been made to update the syllabus by incorporating current and most recent developments in various branches of Zoological Sciences, nevertheless, classical zoology also has been given due weightage. Introduction of an elective paper in zoology will also provide a glimpse of its application. Inclusion of research methodology to the undergrads is the highlight of the course. I am sure that these revised syllabi will cater to better understanding of the subject and beyond.

I appreciate and congratulate the entire team of syllabus framing for the co-operation, tireless work and wish them success.

Chairperson, Ad-hoc Board of Studies in Zoology

PREAMBLE

As a traditional procedural norm of the University of Mumbai, it is the Board of Studies that includes various disciplines, which revive the syllabi after completion of a cycle of five years. Due to rapid advancement in technology, new ideas and concepts, and an ocean of information being generated every day that necessitates updating the students in this present era of exponential information and knowledge. However, in the former practice of syllabus revision, students were unable to imbibe new ideas and concepts as there was limited scope of including them within the syllabi that was theoretical with poor applicability

Looking at the employment generating potential and need of trained human resource in various service sectors in our state, it was became imperative to make a breakthrough from the traditional practice of revising syllabus; and instead giving an opportunity to the stakeholders to adapt and acclimatize with the changes around them and imbibe knowledge which shall enable them to develop entrepreneurship and / or employment avenues and opportunities after pursuing the coveted degree.

With this intention, the Board of Studies in Zoology took decision to put before the S. Y. B. Sc. Zoology students one elective, so that they can study topics of their interest. Board of Studies in Zoology is the only Board in the University that has offered two electives for the S. Y. B. Sc. students and safeguarded their career. Further, BoS formulated Four Syllabus Review Committees (one per course with composition of 01 Convenor and 04 Members). All the committee members worked extensively and exhaustively; and prepared draft of the syllabus. The said draft was uploaded on the website of University of Mumbai for public criticism. The invited opinions were thereby incorporated in the syllabus to make it versatile and student friendly with high applicability. Further, the draft syllabus was re-discussed in the workshop where several teachers and students contributed their views to improve it. In the academic year 2016-17, new syllabus was introduced but it is revived immediately after two years with inclusion of new concepts and techniques. Due care is taken to make the syllabus interdisciplinary, flexible and choice based. All the member teachers have tried their level best to come out with "Need Based Syllabus" that may spark motives in all the stakeholders. We hope that the stakeholders will enjoy the learning of this syllabus in the classrooms, laboratories and on the field.

Dr. G. B. Raje Coordinator

PEDAGOGY

While disseminating the content of the present syllabus, it is imperative and expected that the facilitator is well versed or/and develops their Pedagogical Content Knowledge (PCK), which would include aspects like content, methodology, evaluation and so on. At the onset, the facilitator may include various topic-specific instructional strategies, employing the use of organizers (topic announcement in advance, making models, flip charts, photography, etc). Learning of topics on chromosomes, nucleic acids, cell biology, biomolecules, physiological processes are hence revised, and during the presentations by the learner, the facilitator is able to gauge the preconceptions and learning disabilities. Any misunderstanding of basic concepts can thus be clarified such as 'difference between gene and allele'. Peer teaching is another aspect of pedagogy which takes into account participative learning thus enhancing the learning of the content and making it enjoyable, for example, the use of 'Punnet squares' for working out the crosses in various illustrations on monohybrid and dihybrid ratios, problems based on inheritance, pedigree analysis, molecular biology etc. A declarative learning strategy, which employs the use of familiar contexts and analogies, illustrative diagrams, questioning techniques, discussions, may be used for topics like multiple alleles, polygenic inheritance, DNA testing for paternity issues, scientific attitude, methodology, scientific writing etc. This would enhance the relevance of these topics and engender motivation, thereby balancing the blend of content and pedagogy in teaching. The syllabus includes practical investigations, individual or group student experiments, simulations to assist learners in visualizing and /or internalizing the concepts and processes. The learner could be encouraged to organize field trips, nature trails and treks in and around the ecosystems like lakes, beaches, sanctuaries, national-parks etc. for learning topics like ethology and conservation, amazing animals, applied zoology, pollution and other such, where sensitization, awareness and action are to be invoked within the learner. Visits to museums, and an interdisciplinary approach with various departments like geology, history, geography, chemistry, psychology, medicine would bring about a multi and cross approach to learning concepts such as paleontological evidences, nucleic acids, physiological processes, biomolecules, holistic health and neurological and genetic diseases . ICT enabled learning is the need of the hour and could include screening of documentaries, videos, animations, PPT's, and the use of social media such as Whatsaap, Instagram, Facebook be employed for impactful and continued learning. Facilitators can upload the teaching material, videos of lectures, links to websites for not only enhancing but also focusing and developing the topics of interest by the learner by way of self-study. More importantly, the syllabus endeavours to develop life skills by discovering and

honing entrepreneurial skills of the learner. To accomplish this purpose, visits to apiary, vermicomposting units, and dairy could be encouraged, also interviews with various entrepreneurs, officials of funding agencies must be undertaken to comprehend the nuances of business. Also small projects on various entrepreneurial aspects like setting up vermicomposting bins and aquaria, sale of the vermicompost or setting up an ornamental fish farms, innovations in dairy products and its sale could be encouraged in the campuses. The elective papers are so construed that the learner is driven to gain knowledge, experience through activity-based assignments, and projects, which would enhance entrepreneurial skills, a logical understanding and analysis of business functions.

Capt. Nilima Prabhu Dr. Dilip Kakavipure Mr. Venkatesh Hegde Dr. Surekha Gupta Convenors

Syllabus for S. Y. B. Sc. Course: ZOOLOGY Credit Based Semester and Grading System (To be implemented from the Academic Year 2018-2019)

COURSE CODE	UNIT	ΤΟΡΙϹ	CREDITS	LECTURES /WEEK
USZO301	Ι	Fundamentals of Genetics	2	1
	II	Chromosomes and Heredity		1
	III	Nucleic Acids		1
USZO302	Ι	Nutrition and Excretion	2	1
	II	Respiration and Circulation		1
	III	Control and Coordination of Life Processes,		1
		Locomotion and Reproduction		
USZOE303A	Ι	Ethology	2	1
ELECTIVE 1	II	Parasitology		1
	III	Economic Zoology		1
USZOE303B	1	Maintenance of Aquarium	2	1
ELECTIVE 2	II	Agricultural, Household Pests and their		1
		Control		
	III	Amazing Animals		1
USZOP3		Practicals based on all three courses	03	9

SEMESTER – III

<u>Important Note:</u> College may choose either Elective 1 or Elective 2 for Semester III and Semester IV as their third course depending on the preference selected by majority of the students and endorsed by Head of the Department of Zoology and the Principal of the college.

SEMESTER IV

COURSE	LINIT	TOPIC	CDEDITS	LECTURES
CODE	UNII	IORIC	CREDITS	/WEEK
USZO401	Ι	Origin and Evolution of Life	2	1
	II	Population Genetics and Evolution,		1
	III	Scientific Attitude, Methodology, Scientific		1
		Writing and Ethics in Scientific Research		
USZO402	Ι	Cell Biology	2	1
	II	Endomembrane System		1
	III	Biomolecules		1
USZOE403A	Ι	Comparative Embryology	2	1
ELECTIVE 1	II	Aspects of Human Reproduction		1
	III	Pollution and its Effect on Organisms		1
USZOE403B	Ι	Dairy Industry	2	1
ELECTIVE 2	II	Sericulture		1
	III	Aquaculture	1	1
USZOP4		Practicals based on all three courses	03	9

<u>Important Note:</u> College may choose either Elective 1 or Elective 2 for Semester III and Semester IV as their third course depending on the preference selected by majority of the students and endorsed by Head of the Department of Zoology and the Principal of the college.

UNIT WISE DISTRIBUTION OF SYLLABUS							
Semester III					Semest	ter IV	
Course 5	Course 6	(Elective 1) Course 7A	(Elective 2) Course 7B	Course 8	Course 9	(Elective 1) Course 10A	(Elective 2) Course 10B
Unit 1 Fundamentals of Genetics	Unit 1 Nutrition & Excretion	Unit 1 Ethology	Unit 1 Maintenance of Aquarium	Unit 1 Origin & Evolution of Life	Unit 1 Cell Biology	Unit 1 Comparative Embryology	Unit 1 Dairy Industry
			Unit 2	Unit 2		Unit 2	Unit 2
Unit 2 Chromosomes & Heredity	Unit 2 Respiration & Circulation	Unit 2 Parasitology	Agricultural & Household Pests& their Control	Population Genetics & Evolution	Unit 2 Endomembrane System	Aspects of Human Reproduction	Sericulture
		I			Ι	I	
Unit 3 Nucleic Acids	Unit 3 Control and Coordination of Life Processes, Locomotion & Reproduction	Unit 3 Economic Zoology	Unit 3 Amazing Animals	Unit 3 Scientific Attitude, Methodology, Scientific Writing & Ethics in Scientific Research	Unit 3 Biomolecules	Unit 3 Pollution & its Effects on Organisms	Unit 3 Aquaculture
Practical (USZO P3)	Practical (USZO P3)	Practical (USZO P3)	Practical (USZO P3)	Practical (USZO P4)	Practical (USZO P4)	Practical (USZO P4)	Practical (USZO P4)

SEMESTER III

Sr.	USZO301 (Course-V)	No. of	Learning
No.		lectures	pleasure
	Fundamentals of Constias Chromosomos and Heradity	anotteu	
	Nucleic acids		
	Luit 1. Find an antaly of Consting	151	25hms
	Unit 1: Fundamentals of Genetics	13L	231118
	Objectives:		
	> To introduce basic terms of genetics.		
	> To develop conceptual clarity of Mendelian principles of inheritance		
	and other forms and pattern of inheritance		
	Desired outcome:		
	> Learner would comprehend and apply the principles of inheritance to		
	study heredity.		
	> Learner will understand the concept of multiple alleles, linkage and		
	crossing over.		
1.1	Introduction to Genetics	02L	02hrs
	• Definition, Scope and Importance of Genetics.		
	• Classical and Modern concept of Gene (Cistron, Muton, Recon).		
	• Brief explanation of the following terms: Allele, Wild type and		
	Mutant alleles, Locus, Dominant and Recessive traits, Homozygous		
	and Heterozygous, Genotype and Phenotype, Genome.		
1.2	Mendelian Genetics	08L	12hrs
	• Mendelian Genetics: Monohybrid & Dihybrid Cross, Test Cross,		
	Back Cross, Mendel's Laws of Inheritance, Mendelian Traits in Man.		
	• Exceptions to Mendelian inheritance: Incomplete dominance, Co-		
	dominance, Lethal Genes, Epistasis - Recessive, Double recessive,		
	Dominant and Double dominant.		
	Chromosome theory of inheritance.		
	• Pedigree Analysis-Autosomal dominant and recessive, X- linked		
	dominant, and recessive.		

1.3	Multiple Alleles and Multiple Genes	03L	06hrs
	• Concept of Multiple Alleles, Coat colour in rabbit, ABO and Rh	l	
	blood group system		
	• Polygenic inheritance with reference to skin colour and eye colour in		
	humans.		
	• Concept of Pleiotropy.	l	
1.4	Linkage and Crossing Over	02L	05hrs
	• Linkage and crossing over, Types of crossing over, Cytological basis		
	of crossing over.	l	
		151	Jéhna
	Unit: 2: Chromosomes and Heredity	15L	201118
	Objectives:	l	
	> To familiarize the learners with the structure, types and classification	l	
	of chromosomes.	l	
	To introduce the concept of sex determination and its types, sex	l	
	influenced and sex-limited genes.	l	
	Desired outcome:		
	Learner will comprehend the structure of chromosomes and its types.	l	
	Learner will understand the mechanisms of sex determination.	l	
	Learner would be able to correlate the disorders linked to a	l	
	particular sex chromosome.	l	
2.1	Chromosomes	04L	08hrs
	Types of Chromosomes–Autosomes and Sex chromosomes		
	• Chromosome structure - Heterochromatin, Euchromatin	l	
	• Classification based on the position of centromere	l	
	• Endomitosis, Giant chromosomes- Polytene and Lampbrush	1	
	chromosomes and Significance of Balbiani rings		

2.2	Sex- determination	07L	10hrs
	Chromosomal Mechanisms: XX-XO, XX-XY, ZZ-ZW		
	• Sex determination in Honey bees: Haplo-diploidy		
	• Sex determination in <i>Drosophila</i> - Genic balance theory, Intersex,		
	Gynandromorphs		
	• Parthenogenesis		
	• Hormonal influence on sex determination- Freemartin and Sex		
	reversal.		
	• Role of environmental factors- <i>Bonelia</i> and Crocodile		
	• Barr bodies and Lyon hypothesis		
2.3	Sex linked, sex influenced and sex-limited inheritance.	04L	08hrs
	• X-linked: Colour-blindness, Haemophilia		
	• Y-linked: Hypertrichosis		
	• Sex-influenced genes		
	• Sex-limited genes		
		151	30hrs
	Unit: 3 Nucleic acids	15L	30hrs
	Unit: 3 Nucleic acids Objectives:	15L	30hrs
	Unit: 3 Nucleic acids Objectives: > To introduce the learner to the classical experiments proving DNA as	15L	30hrs
	Unit: 3 Nucleic acids Objectives: > To introduce the learner to the classical experiments proving DNA as the genetic material.	15L	30hrs
	Unit: 3 Nucleic acids Objectives: > To introduce the learner to the classical experiments proving DNA as the genetic material. > To introduce the learner the structure of nucleic acids and the	15L	30hrs
	Unit: 3 Nucleic acids Objectives: > To introduce the learner to the classical experiments proving DNA as the genetic material. > To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology.	15L	30hrs
	Unit: 3 Nucleic acids Objectives: > To introduce the learner to the classical experiments proving DNA as the genetic material. > To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. > To familiarize the learner with the concept of gene expression and	15L	30hrs
	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. 	15L	30hrs
	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. Desired outcome: 	15L	30hrs
	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. Desired outcome: Learner will understand the importance of nucleic acids as genetic 	15L	30hrs
	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. Desired outcome: Learner will understand the importance of nucleic acids as genetic material. 	15L	30hrs
	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. Desired outcome: Learner will understand the importance of nucleic acids as genetic material. Learner would comprehend and appreciate the regulation of gene 	15L	30hrs
	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. Desired outcome: Learner will understand the importance of nucleic acids as genetic material. Learner would comprehend and appreciate the regulation of gene expressions. 	15L	30hrs
3.1	 Unit: 3 Nucleic acids Objectives: To introduce the learner to the classical experiments proving DNA as the genetic material. To introduce the learner the structure of nucleic acids and the concept of central dogma of molecular biology. To familiarize the learner with the concept of gene expression and regulation. Desired outcome: Learner will understand the importance of nucleic acids as genetic material. Learner would comprehend and appreciate the regulation of gene expressions. 	15L	30hrs

	experiment and Hershey Chase experiment of Bacteriophage		
	infection		
	Chemical composition and structure of nucleic acids		
	• Double helix nature of DNA, Solenoid model of DNA		
	• Types of DNA – A, B, Z & H forms		
	• DNA in Prokaryotes - Chromosomal and Plasmid		
	• Extra nuclear DNA - Mitochondria and Chloroplast		
	• RNA as a genetic material in virus		
	• Types of RNA: Structure and function		
		-	
3.2	Flow of genetic information in a eukaryotic cell	05L	08hrs
3.2	Flow of genetic information in a eukaryotic cellDNA Replication	05L	08hrs
3.2	 Flow of genetic information in a eukaryotic cell DNA Replication Transcription of mRNA 	05L	08hrs
3.2	 Flow of genetic information in a eukaryotic cell DNA Replication Transcription of mRNA Translation 	05L	08hrs
3.2	 Flow of genetic information in a eukaryotic cell DNA Replication Transcription of mRNA Translation Genetic code 	05L	08hrs
3.2	 Flow of genetic information in a eukaryotic cell DNA Replication Transcription of mRNA Translation Genetic code Gene expression and regulation	05L 03L	08hrs 08hrs
3.2	 Flow of genetic information in a eukaryotic cell DNA Replication Transcription of mRNA Translation Genetic code Gene expression and regulation One gene-one enzyme hypothesis /one polypeptide hypothesis 	05L 03L	08hrs 08hrs
3.2	 Flow of genetic information in a eukaryotic cell DNA Replication Transcription of mRNA Translation Genetic code Gene expression and regulation One gene-one enzyme hypothesis /one polypeptide hypothesis Concept of Operon 	05L 03L	08hrs 08hrs

	SEMESTER – III		
Sr. No	USZO302 (COURSE-VI)	No. of lect allotted	Learning pleasure
	Nutrition and Excretion, Respiration and Circulation, Control and Coordination of Life Processes, Locomotion and Reproduction		
	Unit: 1 Nutrition and Excretion	15L	23hrs
	Objectives:		
	> To introduce the concepts of physiology of nutrition, excretion and osmoregulation.		
	> To expose the learner to various nutritional apparatus, excretory		
	and osmoregulatory structures in different classes of organisms.		
	Desired outcome:		
	 Learner would understand the increasing complexity of nutritional, 		
	excretory and osmoregulatory physiology in evolutionary		
	hierarchy.		
	Learner would be able to correlate the habit and habitat with		
	nutritional, excretory and osmoregulatory structures.		
1.1	Comparative study of nutritional apparatus (structure and function):	05L	06hrs
	Amoeba, Hydra, Cockroach, Amphioxus, Pigeon, Ruminants.		
.2	Physiology of digestion in man.	02L	04hrs
1.3	Comparative study of excretory and osmoregulatory structures and functions.	05L	08hrs
	a) Amoeba -Contractile vacuole		
	b) Planaria -Flame cells		
	c) Cockroach- Malpighian tubules		
1.4	Categorization of animals based on principle nitrogenous excretory	01L	01hrs
	products		
1.5	Structure of kidney, uriniferous tubule and physiology of urine	02L	04 hr
	formation in man		

	Unit: 2 Respiration and Circulation	15L	27hrs
	Objectives:		
	> To introduce the concepts of physiology of respiration and		
	circulation		
	> To expose the learner to various respiratory and circulatory		
	organs in different classes of organisms.		
	Desired outcome:		
	Learner would understand the increasing complexity of respiratory		
	and circulatory physiology in evolutionary hierarchy.		
	> Learner will be able to correlate the habit and habitat of animals		
	with respiratory and circulatory organs.		
2.1	Comparative study of respiratory organs (structure and function):	03L	06hrs
	Earthworm, Spider, Any bony fish (Rohu / Anabas / Clarius),		
	Frog and Pigeon.		
2.2	Structure of lungs and physiology of respiration in man	02L	03hrs
2.2	Commenting study of simulations (s) Onen and Classed type	0.21	0.4h ma
2.3	(b) Single and Double type,	02L	U4IIIS
2.4	(b) Single and Double type.	0.21	021
2.4	Types of circulating fluids- water, Coelomic fluid, Haemolymph,	02L	USHIS
2.5	Lymph and Composition of blood	0.41	071
2.5	Comparative study of hearts (structure and function): Earthworm,	04L	0/nrs
2(Cockroach, Shark, Frog, Crocodile and Pigeon.	02	0.41
2.6	Structure and mechanism of working of heart in man.	02	04nrs
	Unit: 3 Control and Coordination, Locomotion and Reproduction	15L	25hrs
	Objectives:		
	> To introduce the concepts of physiology of control and		
	coordination, locomotion and reproduction.		
	> To expose the learner to various locomotory and reproductive		
	structures in different classes of organisms.		
	Desired outcome:		
	> Learner would understand the process of control and coordination		
	by nervous and endocrine regulation.		

	Learner would be amazed by various locomotory structures found		
	in the animal kingdom.		
	Learner would be acquainted with various reproductive strategies		
	present in animals.		
3.1	Control and co-ordination	05L	08hrs
	• Irritability in <i>Paramoecium</i> , nerve net in <i>Hydra</i> , nerve ring and		
	nerve cord in earthworm.		
	• Types of neurons based on the structure and function.		
	• Conduction of nerve impulse: Resting potential, Action potential		
	and Refractory period		
	• Synaptic transmission		
3.2	Movement and Locomotion	04L	08hrs
	Locomotory organs- structure and functions;		
	a. Pseudopodia in Amoeba (Sol- Gel theory), Cilia in Paramoecium		
	b. Wings and legs in cockroach		
	c. Tube feet in starfish		
	d. Fins of fish		
3.3	Structure of striated muscle fibre in human and sliding filament theory	02L	02hrs
3.4	Reproduction	04L	07hrs
	a. Asexual Reproduction- Fission, Fragmentation, Gemmule		
	formation and Budding		
	b. Sexual reproduction		
	i. Gametogenesis		
	ii. Structure of male and female gametes in human		
	iii. Types of fertilization		
	iv. Oviparity, Viviparity, Ovo-viviparity		

	SEMESTER III		
	USZOE1303 (COURSE-VIIA) ELECTIVE 1		
	Ethology, Parasitology, Economic Zoology	15L	26hrs
	Unit: 1 Ethology		
	Objectives:		
	> To equip learner with a sound knowledge of how animals		
	interact with one another and their environment.		
	To enable the learner to understand different behavioural		
	patterns.		
	Desired Outcome:		
	Learner would gain insight into different types of animal		
	behaviour and their role in biological adaptations.		
	Learner would be sensitized to the feelings which are		
	instrumental in social behaviour.		
1.1	Introduction to Ethology:	04L	06hrs
	• Definition, History and Scope of Ethology		
	• Animal behaviour : Innate and Learned behaviour		
	• Types of learning: Habituation, Imprinting and Types of		
	imprinting - Filial and sexual, Classical conditioning		
	• Instrumental learning and insight learning.		
1.2	Aspects of animal behaviour:	07L	12hrs
	• Communication in bees and ants		
	Mimicry and colourations		
	• Displacement activities, Ritualization		
	• Migration in fish, schooling behaviour		
	• Habitat selection, territorial behaviour.		
1.3	Social behaviour:	04L	08hrs
	• Social behaviour in primates-Hanuman langur		
	• Elements of socio-biology: Altruism and Kinship		
		1	1

	Unit: 2 Parasitology	15L	27hrs
	Objectives:		
	> To acquaint the learner with the concepts of parasitism and		
	its relationship in the environment.		
	> To introduce the learner to modes of transmission of		
	parasites.		
	Desired Outcome:		
	Learner would understand the general epidemiological		
	aspects of parasites that affect humans and take simple		
	preventive measures for the same.		
	Learner would comprehend the life cycle of specific		
	parasites, the symptoms of the disease and its treatment.		
2.1	Introduction to Parasitology and Types of Parasites	03L	06hrs
	Definitions: Parasitism, Host, Parasite, Vector-biological		
	and mechanical		
	• Types of parasite- Ectoparasite, Endoparasite and their		
	subtypes		
	Parasitic adaptations in Ectoparasites and Endoparasites		
	• Types of host: Intermediate and definitive, reservoir		
2.2	Host-parasite relationship and host specificity	02L	06hrs
	• Different types of host- parasite relationship, structural		
	specificity, physiological specificity and ecological		
	specificity		
2.3	Life cycle, pathogenicity, control measures and treatment	04L	06hrs
	• Entamoeba histolytica, Fasciola hepatica,		
	Taenia solium, Wuchereria bancrofti		
2.4	Morphology, life cycle, pathogenicity, control measures and	02L	06hrs
	treatment		
	• Head louse (Pediculus humanus capittis),		
	Mite (Sarcoptes scabei), Bed bug (Cimex lectularis)		
2.5	Parasitological significance	04L	03hrs
	• Zoonosis- Bird flu, Anthrax, Rabies and Toxoplasmosis		

			- <i>(</i> 7
	Unit 3 Economic Zoology	15L	24hrs
	Objectives:		
	To disseminate information on economic aspects of animals like		
	apiculture, vermiculture and dairy science.		
	To encourage young learner for self-employment.		
	Desired Outcome:		
	Learner would gain knowledge on animals useful to mankind		
	and the means to make the most of it.		
	Learner would learn the modern techniques in animal		
	husbandry.		
	Learner would pursue entrepreneurship as a career.		
3.1	APICULTURE	06L	08hrs
3.1.1	Methods of bee keeping and management		
	• Introduction to different species of honey bees used in		
	apiculture.		
	• Selection of flora and bees for apiculture.		
	• Advantages and disadvantages of traditional and modern		
	methods of apiculture.		
	• Pests and Bee enemies- Wax moth, wasp, black ants,		
	bee-eaters, king crow and disease control		
3.1.2	Economic importance		
	Honey- Production, chemical composition and economic		
	importance		
	• Bee wax- Composition and economic importance.		
	• Role of honey bee in pollination.		
3.2	VERMICULTURE	04L	08hrs
3.2.1	Rearing methods, management and economic importance		
	• Introduction to different species of earthworms used in		
	vermiculture.		
	• Methods of vermiculture.		
	Maintenance and harvesting		

	Economic importance: Advantages of vermiculture, demand		
	for earthworms; market for vermicompost and scope for		
	entrepreneurship.		
3.3	DAIRY SCIENCE	05L	08hrs
3.3.1	Dairy development in India		
	• Role of dairy development in rural economy, employment		
	opportunities		
3.3.2	Dairy Processing		
	• Filtration, cooling, chilling, clarification, pasteurization,		
	freezing		
3.3.3	Milk and milk products		
	Composition of milk		
	• Types of milk:		
	a) Buffalo milk		
	b) Cow milk (A1 &A2)		
	• Whole milk and toned milk		
	Milk products		

	SEMESTER III		
	USZOE2303 (COURSE-VIIB) – ELECTIVE 2		
	Maintenance of Aquarium, Agricultural and Household pests and their control , Amazing animals	15L	26hrs
	Objectives:		
	To develop skills for maintenance of aquarium and		
	budgeting for setting up an aquarium and ornamental fish farm		
	 To study the biology of ornamental fishes, its food and feeding and their transportation. 		
	Desired Outcome:		
	Learner will develop skills for maintenance of aquarium and become familiar with the budgeting aspects for setting up an ornamental fish farm.		
	Learner will derive knowledge about the biology of ornamental fishes, its food and feeding habits and their transportation.		
	Unit.1 Maintenance of Aquarium		
1.1	Introduction and scope.	02L	04hrs
1.2	Exotic and Endemic species.	02L	06hrs
1.3	Biology of aquarium fishes:	02L	08hrs
	• Guppy		
	• Molly		
	Gold fish		
1.4	Common characters and sexual dimorphism of marine fishes:	02L	06hrs
	Anemone fish		
	• Butterfly fish		

1.5	Food and feeding:	02L	04hrs
	• Live fish feed		
	• Formulated fish feed		
1.6	Fish transportation:	03L	05hrs
	i) Handling ii) Packing iii) Transport		
1.7	General maintenance of aquarium and budget for setting up an	02L	04hrs
	ornamental fish farm.		
	Unit: 2 Agricultural pests and their control	15L	27hrs
	Objectives:		
	To study different types of pests.		
	To comprehend various aspects of agricultural and		
	household pests and their economic implications.		
	To learn about the different pest control measures and		
	plant protection appliances.		
	Desired Outcome:		
	Learner will gain information on the different types of		
	pests and comprehend various aspects of agricultural		
	and household pests and its economic implications.		
	Learner will derive knowledge of pest control measures		
	and appliances used for plant protection against pests.		
2.1	Introduction and concept of pest	02L	06hrs
2.1.1	Types of pests:	03L	06hrs
	Agricultural: Locust		
	• Household: Bed bug		
	• Stored grains: Flour beetle		
	• Structural: Termites		
	• Veterinary: Tick		
	• Forestry: Grasshopper		

2.2	Major insect pests of agricultural importance	03L	06hrs
	(Life cycle, nature of damage and control measures).		
	a) Jowar stem borer		
	b) Brinjal fruit borer		
	c) Aphids		
	d) Rice weevil		
	e) Pink bollworm		
2.3	Other pests:	02L	06hrs
	Rats, bandicoots, crabs, snails, slugs, birds and squirrels		
2.4	Pest control measures:	03L	03hrs
	i) Cultural control ii) Physical control iii) Mechanical control		
	iv) Chemical control v) Biological control, vi) Concept of IPM		
2.5	Plant protection appliances:	02L	03hrs
	Rotary duster, knapsack sprayer and cynogas pump, hazards of		
	pesticides and antidotes.		
	Unit 3 Amazing animals	15L	24hrs
	Unit 3 Amazing animals Objectives:	15L	24hrs
	Unit 3 Amazing animals Objectives: > To comprehend the concept of life timeline, and the	15L	24hrs
	Unit 3 Amazing animals Objectives: > To comprehend the concept of life timeline, and the natural history of some amazing animals.	15L	24hrs
	Unit 3 Amazing animals Objectives: > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing	15L	24hrs
	Unit 3 Amazing animals Objectives: > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals.	15L	24hrs
	Unit 3 Amazing animals Objectives: > > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome:	15L	24hrs
	Unit 3 Amazing animals Objectives: > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line.	15L	24hrs
	Unit 3 Amazing animals Objectives: > > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line. > Learner will gain knowledge of and develop various	15L	24hrs
	Unit 3 Amazing animals Objectives: > > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line. > Learner will gain knowledge of and develop various skills while studying amazing animals.	15L	24hrs
3.1	Unit 3 Amazing animals Objectives: > > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line. > Learner will gain knowledge of and develop various skills while studying amazing animals. Natural History	15L 04L	24hrs 08hrs
3.1	Unit 3 Amazing animals Objectives: > > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line. > Learner will gain knowledge of and develop various skills while studying amazing animals. Natural History a) Introduction and life timeline	15L 04L	24hrs 08hrs
3.1	Unit 3 Amazing animals Objectives: > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line. > Learner will gain knowledge of and develop various skills while studying amazing animals. Natural History a) Introduction and life timeline b) Butterflies the flying jewels- Blue Mormon, Striped	15L 04L	24hrs 08hrs
3.1	Unit 3 Amazing animals Objectives: > > To comprehend the concept of life timeline, and the natural history of some amazing animals. > To kindle interest and yearning to study amazing animals. Desired Outcome: > Learner would understand the concept of life time-line. > Learner will gain knowledge of and develop various skills while studying amazing animals. Natural History a) Introduction and life timeline b) Butterflies the flying jewels- Blue Mormon, Striped tiger	15L 04L	24hrs 08hrs

	lizard and Gharial		
	d) Feathered Bipeds: Kingfisher, Drongo		
	e) Mammals of India: Malabar giant squirrel		
2.2	The world's most emprine enimals (emphasis should be given	051	106.00
3.2	The world's most amazing ammais (emphasis should be given	05L	TUNES
	only on amazing aspects)		
	a) Octopus		
	b) Spider		
	c) Mudskipper		
	d) Flying fish		
	e) Pebble toad		
	f) Strawberry poison frog		
	g) Komodo dragon		
	h) Lesser flamingo		
	i) Great white pelican		
	j) Spatule-tailed hummingbird		
	k) Cheetah		
3.3	Five most incredible animals discovered within the last decade	03L	5hrs
	a) The Purple (joker) crab,		
	b) The African dwarf saw-shark (stabbing shark),		
	c) The Psychedelic (crime fighting) gecko,		
	d) The Matilda viper		
	e) The Myanmar snub-nosed monkey		
3.4	Marvels of Animals	03L	08hrs
	a) Mantis shrimp: Fastest punch		
	b) Homing in Pacific salmon		
	c) Sperm whale: Mechanism of deep sea diving.		

	PRACTICAL SEMESTER III
	Practical USZOP3 (Course - V)
1	Extraction and detection of DNA
2	Extraction and detection of RNA
3	Mounting of Barr bodies
4	Study of polytene chromosome
5	Study of mitosis- temporary squash preparation of Onion root tip
6	Detection of blood groups and Rh factor
7	Problems in Genetics
	a) Monohybrid/ Dihybrid Cross: b) X- linked inheritance:
	c) Multiple Alleles
8	Chromosome morphology: (photograph to be provided)
9	Pedigree analysis
10	Problems based on molecular biology

	SEMESTER III
	Practical USZOP3 (Course - VI)
1	Urine analysis—Normal and Abnormal constituents
2	Detection of ammonia excreted by fish from aquarium water
3	Detection of uric acid from excreta of birds
4	Study of striated and non-striated muscle fibre
5	Study of nutritional apparatus (Amoeba, Hydra, Earthworm, Pigeon,
	Ruminant stomach)
6	Study of respiratory structures:
	a. Gills of bony fish and cartilaginous fish
	b. Lungs of frog
	c. Lungs of mammal
	d. Accessory respiratory structure in Anabas / Clarius
	e. Air sacs of Pigeon
7	Study of locomotory organs (Amoeba, Bivalve, Cockroach, Starfish, Fish,
	and Bird).
8	Study of different types of hearts (Cockroach, Shark, Frog, Garden lizard,
	Crocodile and Mammal).
9	Study of permanent slides on Reproduction: (a) Sponge gemmules,
	(b) Hydra budding, (c) T.S. of mammalian testis, (d) T.S. of mammalian ovary.

	SEMESTER III
	Practical USZOE1P3 (Course - VIIA) Elective I
1	Extraction of casein from milk and its qualitative estimation
2	Preparation of paneer from given milk sample
3	Measurement of density of milk using different samples by Lactometer
4	Study of Honey Bee:
	a) Life Cycle of Honey Bee and Bee Hive
	b) Mouthparts of Honey Bee
	c) Legs of Honey Bee
	d) Sting Apparatus of Honey Bee
5	Study of ethological aspects:
	a) Warning colouration
	b) Animal instinct
	c) Imprinting
	d) Communication in animals: Chemical signals and Sound signals
	e) Displacement activities in animals: Courtship and mating behaviour in
	animals and Ritualization
6	Study of Protozoan parasites:
	a. Trypanosoma gambiense
	b. Giardia intestinalis
7	Study of Helminth parasites:
	a. Ancylostoma duodenale
	b. Dracunculus medinensis
8	Parasitic adaptations: Scolex and mature proglottid of Tapeworm
9	Study of Ectoparasites:
	a) Leech b)Tick c)Mite
10	Project- Suggested topics on economic zoology (e.g. Apiculture/ Sericulture/
	Lac culture / Vermicompost technique / Construction of artificial
	beehives /Animal husbandry/ Aquaculture / any other)

	SEMESTER III
	Practical USZOE2P3 (Course - VIIB) Elective 2
1	Maintenance of Aquarium– Equipments required for setting up of aquarium –
	types of filter, type of gravel, aerator pump, lighting, nets, different species of
	aquatic plants and ornamental fishes.
2	Types of pest – Agricultural-aphids, Household-cockroaches, housefly,
	Structural-termites, Stored grains- borer, Veterinary- fleas,
	Forestry- caterpillar.
3	Other pests- a) Invertebrates -nematodes, leech, snails, slugs. b) Vertebrates-
	rats, birds
4	Types of pest control –a) Physical b) Biological c) Electronic d) Insecticides,
	Rodenticides and Special Treatments
5	Hybrid animals- a) Liger b) Wholphin c) Zebroid d) Savannah cat
6	Most incredible animals in last decades – a) Joker crab b) Snub nose monkey
	c) Matilda viper
7	Endangered animals of India – a) Amboli bush frog b) Indian egg- eating
	snake (Wester mann's snake) c) Spoon- billed sandpiper d) Snow leopard
8	A project on aquarium setting in laboratory / vermicomposting.
9	A field visit to study the natural flora and fauna; and submission of report with
	photographs.

*Note- The practicals may be conducted by using preserved specimens/permanent slides authorized by the wild life and such other regulating bodies though it is strongly recommended that the same should be taught by using photographs/audio-visual aids/simulations/ models etc. as recommended by the UGC and as envisaged in the regulations of the relevant monitoring bodies. No new specimens, however, shall be procured for conducting practicals mentioned here in above.

N.B:

- It is pertinent to note that we have to adhere strictly to the directions as given in the UGC Circular F14-4/2006 (CPP-II).
- II) Apart from the Institutional Animal Ethics Committee (IAEC) and any other Committee appointed by a Competent Authority/Body from time to time, every college should constitute the following Committees:
 - 1) A Committee for the Purpose of Care and Supervision of Experimental Animals (CPCSEA)
 - A Dissection Monitoring Committee (DMC) to ensure that no dissections or mountings are done, using animals

Composition of DMC shall be as follows:

- i) Head of the Concerned Department (Convener/Chairperson)
- ii) Two Senior Faculty Members of the concerned Department
- iii) One Faculty of related department from the same College
- iv) One or two members of related department from neighboring colleges.

USE OF ANIMALS FOR ANY EXPERIMENT/DISSECTION/MOUNTING IS BANNED. SIMULATIONS, AUTHORISED PERMANENT SPECIMENS/SLIDES, CHARTS, MODELS AND OTHER INNOVATIVE METHODS ARE ENCOURAGED.

Semester –III

REFERENCE BOOKS AND ADDITIONAL READING

USZO301 (COURSE-V)

- 1. Principles of Genetics. Gardner, E. J., Simmons, M.J and Snustad, D.P. John Wiley and Sons
- 2. Concepts of Genetics. Klug, W. S., Cummings M. R., Spencer, C.A. Benjamin Cummings
- 3. Genetics- A Molecular Approach. Russell, P. J Benjamin Cummings
- Genetics: Analysis of Genes and Genomes. Daniel L., Hartl, Elizabeth W. Jones Jones & Bartlett Publishers
- Introduction to Genetic Analysis. Griffiths, A. J. F., Wessler. S.R., Lewontin, R.C. and Carroll, S. B. W. H. Freeman and Co
- 6. Cell Biology Genetics, Molecular Biology Evolution and Ecology Verma P. S. and Agrawal P.K., 9thedition, S. Chand Publication, New Delhi
- 7. Principles of Genetics Eight edition- Eldon john Gardner, Michael J. Simmons, D. Peter Snustad
- 8. Genetics- Weaver, Hedrick, third edition, McGraw Hill Education
- 9. Genetics A Mendelian approach Peter J. Russel, Pearson Benjamin Cummings
- Genetics A conceptual approach, Benjamin A. Pierce, Southwestern University, W.H. Freeman and company, New York
- 11. Genetics, Third Edition, Monroe W. Strickberger
- Genetics from gene to genome, third edition, Leeland H. Hartwell, Leeroy Hood, Michael 7.
 L. Goldberg, Ann E. Reynolds, Lee M. Silver, McGraw Hill Education

USZO302 (COURSE-VI)

- 1. Vertebrate Zoology Volume I- Jordan and Verm, S. Chand and Co.
- 2. Invertebrate Zoology Volume II- Jordan and Verma, S. Chand and Co.
- 3. Invertebrate Zoology- Majupuria T. C., NaginS.and Co.
- 4. Chordate Zoology- Dhami P. S. and Dhami J. K., R. Chand and Co.
- 5. Invertebrate Zoology- Dhami P. S. and Dhami J. K., R. Chand and Co.
- 6. Introduction to Vertebrates- Moore Cambridge University- Low Priced Edition.
- 7. Zoology- Miller S. A. and Harley J. B., Tata McGraw Hill.
- 8. Modern Textbook of Zoology, Invertebrates, Kotpal R. L

9. Biological Science, Taylor D.J., Stout G.W., Green N.P.O, Soper R., Cambridge University Press.

USZOE1303 (COURSE-VIIA)

- 1. Animal Behaviour- David McFarland
- 2. Animal Behaviour- Mohan Arora
- 3. Animal Behaviour- Reena Mathur
- 4. An introduction to Animal Behaviour- Dawkins
- 5. Animal Behaviour-Agarwal
- 6. Animal Behaviour- Tinbergen

7. Biology of Insects- 1992 Saxena S. C. Oxford and IBH Publishing Co New Delhi. Bombay. Calcutta

- 8. Bee and Bee Keeping- Roger A. Morse, Cornell University Press London
- 9. Vermiculture Technology Clive A. Edwards, Norman Q. Arancon and Rhonda Sherman
- 10. Parasitology- Chatterjee K. D., Chatterjee Medical Publishers.
- 11. Medical Parasitology- Arora
- 12. Textbook of Medical Parasitology-.C.K Jayaram Paniker, Jaypee Brothers.
- 13. A text book of Parasitology- Kochhar S. K. Dominant Pub. & Dis, New Delhi.
- 14. Essentials of Parasitology- Gerald D. Schmidt: Universal Bookstall, New Delhi.
- 15. Introduction to Parasitology- Sharma P. N. and Ratnu L.S., Chand S & Co. Pvt. Ltd.
- 16. Introduction to Parasitology- Chandler and Read John Wiley & Sons
- 17. Economic Zoology Biostatistics and Animal behaviour S. Mathur, Rastogi Publicatons.
- 18. Economic Zoology- Shukla G.S. & Upadhyay V. B., Rastogi Publications.
- 19. A handbook on Economic Zoology, S. Chand & Co.

USZOE2303 (COURSE-VIIB)

- 1. A General textbook of entomology -- A D Imms. Asia Publication.
- 2. Agricultural insect pests and their control. V.B. Awasthi. Scientific Publication.
- 3. A manual of practical entomology. M. M. Trigunayat. Scientific Publication.
- 4. Applied Entomology Alaka Prakash and Fennemore. New Age Publishers.
- 5. Applied Entomology Awasthi. Scientific Publication.
- A Text book of insect morphology, physiology and endocrinology Tembhare D. B.– Chand Publication
- 7. Entomology and Pest Management Larry P. Pedigo. Pearson Education.

- Forensic Entomology-The utility of Arthropods in legal investigations. –Jason H. Byrd and James L. Castner. CRC Press.
- 9. General and applied Entomology David and Ananthakrishnan. Tata McGraw Hill
- 10. Insect endocrinology and physiology Tembhare D B S Chand publication.
- Insect Jewelry by Roger D. Akre., Laurel D. Hansen, and Richards S. Zack: in Summer (1991). (Online available as research article).
- 12. Insect Year Book of Agriculture- American Agriculture Department Publication.
- 13. Economic Zoology- Shukla G.S. & Upadhyay V. B., Rastogi Publications.
- 14. A handbook on Economic Zoology, S. Chand & Co.
- 15. Candler, W., & Kumar, N. (1998). India: The dairy revolution: The impact of dairy development in India and the World Bank's contribution. World Bank Publications.
- Milk and dairy products in human nutrition: production, composition and health. John Wiley & Sons, Park, Y. W., & Haenlein, G. F. (Eds.). (2013).
- Dairy development in India: An appraisal of challenges and achievements. Concept Publishing Company, Venkatasubramanian, V., Singh, A. K., & Rao, S. V. N. (2003).
- Dairy Development in The New Millennium (The Second White Revolution). Deep and Deep Publications, Shrivastava, J. S. M. (2008).
- 19. http://listverse.com/2012/12/03/10-amazing-animal-abilities/
- 20. www.toptenz.net/top-10-amazing-animals-discovered-within-the-last-decade.php
- 21. dailynewsdig.com/top-10-amazing-animal-hybrids.
- 22. https://www.pinterest.com/pin/16044142395584735/
- 23. www.naturalhistorymag.com/
- 24. https://naturalhistory.si.edu/.

SEMESTER IV

Sr. No	USZO401 (COURSE-VIII)	No. of lect allotted	Learning pleasure
	Origin and Evolution of Life, Population Genetics and Evolution, Scientific Attitude, Methodology, Scientific Writing and Ethics in Scientific Research		
	Unit 1: Origin and Evolution of Life	15L	30hrs
	 Objective: To impart scientific knowledge about how life originated on our planet 		
	 Desired outcomes: Learner will gain insights into the origin of life. Learner will analyse and critically view the different theories of evolution. 		
1.1	 Introduction Origin of the Universe Chemical evolution - Miller-Urey experiment, Haldane and Oparin theory Origin of life Origin of eukaryotic cell 	05L	10hrs
1.2	 Evidences in favour of organic evolution Evidences from geographical distribution, palaeontology, anatomy, embryology, physiology and genetics 	04L	08hrs
1.3	 Theories of organic evolution Theory of Lamarck Theory of Darwin and Neo- Darwinism Mutation Theory Modern synthetic theory Weismann's Germplasm theory 	06L	12hrs
	 Mutation Theory Modern synthetic theory Weismann's Germplasm theory 		
	Unit: 2: Population Genetics and Evolution	15L	28hrs
-----	---	-----	-------
	Objective:		
	> To develop an understanding of genetic variability within a		
	population and learn as to how the change in the gene pool leads to		
	evolution of species		
	Desired outcomes:		
	> Learner would understand the forces that cause evolutionary changes		
	in natural populations		
	> Learner would comprehend the mechanisms of speciation		
	> Learner will be able to distinguish between microevolution,		
	macroevolution and megaevolution		
2.1	Introduction to Population genetics	01L	03hrs
	• Definition		
	• Brief explanation of the following terms: Population, Gene pool, Allele		
	frequency, Genotype frequency, Phenotype frequency, Microevolution		
2.2	Population genetics	05L	08hrs
	Hardy- Weinberg Law		
	• Factors that disrupt Hardy Weinberg equilibrium: Mutation, Migration		
	(gene flow), Non-random mating (inbreeding, inbreeding depression,		
	assortative mating(positive and negative), disassortative mating,		
	Genetic drift (sampling error, fixation, bottleneck effect and founder		
	effect)		
	• Natural Selection: Patterns of Natural Selection-Stabilizing selection,		
	Directional selection (examples: peppered moth, antibiotic resistance in		
	bacteria, pesticide resistance) and Disruptive selection		
2.3	Evolutionary genetics	07L	13hrs
	• Genetic variation: Genetic basis of variation-mutations and		
	recombination (crossing over during meiosis, independent assortment		
	of chromosomes during meiosis and random union of gametes during		
	fertilization)		
	• Nature of genetic variations: Genetic polymorphism, Balanced		
	polymorphism, Mechanisms that preserve balanced polymorphism-		

	Heterozygote advantage and frequency dependent selection,		
	Neutral variations		
	Geographic variation (Cline)		
	• Species concept: Biological species concept and evolutionary species		
	concept		
	• Speciation and Isolating mechanisms: Definition and modes of		
	speciation (allopatric, sympatric, parapatric and peripatric)		
	Geographical isolation		
	Reproductive isolation and its isolating mechanisms		
	(prezygotic and postzygotic)		
2.4	Macroevolution and megaevolution: Concept and Patterns of	02L	04hrs
	macroevolution (stasis, preadaptation /exaptation, mass extinctions,		
	adaptive radiation and coevolution), Megaevolution		
		I	
		151	221.00
	Unit: 3 Scientific Attitude Methodology, Scientific Writing and Ethics in Scientific Research	15L	321rs
	Objective:		
	 To inculcate scientific temperament in the learner 		
	Desired outcome:		
	> The learner would develop qualities such as critical thinking and		
	analysis		
	The learner will imbibe the skills of scientific communication and		
	he/she will understand the ethical aspects of research		
3.1	Process of saionage	041	10hrs
	r rocess of science.	04L	101113
	 A dynamic approach to investigation: The Scientific method, 	041	10113
	 A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, 	UTL	10113
	 A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, Role of chance in scientific discovery (serendipity) 	UTL	101113
	 A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, Role of chance in scientific discovery (serendipity) Scientific research: Definition, difference between method and 	UTL	10113
	 A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, Role of chance in scientific discovery (serendipity) Scientific research: Definition, difference between method and methodology, characteristics, types 	UTL	10113
	 A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, Role of chance in scientific discovery (serendipity) Scientific research: Definition, difference between method and methodology, characteristics, types Steps in the Scientific method: Identification of research problem, 	UTL	10113
	 A dynamic approach to investigation: The Scientific method, Deductive reasoning and inductive reasoning, Critical thinking, Role of chance in scientific discovery (serendipity) Scientific research: Definition, difference between method and methodology, characteristics, types Steps in the Scientific method: Identification of research problem, formulation of research hypothesis, testing the hypothesis using 	UTL	10113

	methodology and execution (appropriate controls, sample size,		
	technically sound, free from bias, repeat experiments for		
	consistency), documentation of data, data analysis and		
	interpretation, results and conclusions		
	• Dissemination of data: Reporting results to scientific community		
	(publication in peer- reviewed journals, thesis, dissertation, reports,		
	oral presentation, poster presentation)		
	• Application of knowledge: Basic research, Applied research and		
	Translational research		
3.2	Scientific writing:	04L	10hrs
	• Structure and components of a research paper: preparation of		
	manuscript for publication of research paper- title, authors and their		
	affiliations, abstract, keywords and abbreviations, introduction,		
	material and methods, results, discussion, conclusions,		
	acknowledgement, bibliography; figures, tables and their legends		
3.3	Writing a review paper	03L	05hrs
	• Structure and components of review		
	• Report writing and types of report		
	• Computer application: Plotting of graphs, Statistical analysis of		
	data. Internet and its application in research-Literature survey,		
	online submission of manuscript for publication		
3.4	Ethics	03L	05hrs
	• Ethics in animal research: The ethical and sensitive care and use of		
	animals in research, teaching and testing, approval from Dissection		
	Monitoring Committee (DMC)		
	• Ethics in clinical research: Approval from clinical research ethics		
	committee or/and informed consent		
3.5	committee or/and informed consent Plagiarism	01L	02hrs

	SEMESTER IV		
Sr. No.	USZO402 (Course - IX)	No. of lectures allotted	Learning pleasure
	Unit 1: Cell Biology	15L	24hrs
	Objective:		
	> To study the structural and functional organization of cell with an		
	emphasis on nucleus, plasma membrane and cytoskeleton.		
	Desired outcome:		
	Learner would acquire insight into the composition of the transport		
	mechanisms adopted by the cell and its organelles for its		
	maintenance and composition of cell		
1.1	Introduction to cell biology	02L	04hrs
	• Definition and scope		
	• Cell theory		
	• Generalized prokaryotic, eukaryotic cell: size, shape and structure		
1.2	Nucleus	05L	06hrs
	• Size, shape, number and position		
	• Structure and functions of interphase nucleus		
	• Ultrastructure of nuclear membrane and pore complex		
	• Nucleolus: general organization, chemical composition & functions		
	• Nuclear sap/ nuclear matrix		
	Nucleocytoplasmic interactions		
1.3	Plasma membrane	04L	08hrs
	Fluid Mosaic Model		
	Junctional complexes		
	Membrane receptors		
	Modifications: Microvilli and Desmosomes		
1.4	Transport across membrane	02L	04hrs
	Diffusion and Osmosis		
	• Transport: Passive and Active		
	Endocytosis and Exocytosis		
1.5	Cytoskeletal structures		
	Microtubules: Composition and functions		
	Microfilaments: Composition and functions		

	Unit: 2: Endomembrane System	15L	28hrs
	Objective:		
	> To acquaint the learner with ultrastructure of cell organelles and their		
	functions		
	Desired outcome:		
	Learner would appreciate the intricacy of endomembrane system.		
	> Learner would understand the interlinking of endomembrane		
	system for functioning of cell		
2.1	Endoplasmic reticulum (ER): General morphology of endomembrane	01L	03hrs
	system, ultrastructure, types of ER and biogenesis of ER		
	• Functions of Rough Endoplasmic Reticulum (RER) and Smooth		
	Endoplasmic Reticulum (SER)		
2.2	Golgi complex: Ultrastructure of Golgi complex, functions of Golgi	06L	10hrs
	complex (protein glycosylation, lipid and polysaccharide metabolism,		
	protein sorting and secretion, Golgi Anti-Apoptotic Protein -GAAP)		
2.3	Lysosomes: Origin, occurrence, polymorphism and functions;	03L	5hrs
	Peroxisomes: Origin, morphology & functions		
2.4	Mitochondria: Ultrastructure, chemical composition, functions of	05L	10hrs
	mitochondria and bioenergetics (Chemical energy & ATP, Kreb's cycle,		
	respiratory chain and oxidative phosphorylation)		
			1
	Unit: 3 Biomolecules	15L	30hrs
	Objective:		
	> To give learner insight into the structure of biomolecules and their		
	role in sustenance of life.		
	Desired outcome:		
	> The learner will realize the importance of biomolecules and their		
	clinical significance.		
3.1	Biomolecules: Concept of micromolecules and macromolecules	02L	05hrs

3.2	Carbohydrates:	04L	08hrs
	• Definition classification, properties and isomerism, glycosidic bond		
	• Structure of Monosaccharides (glucose and fructose);		
	Oligosaccharides (lactose and sucrose); Polysaccharides (cellulose,		
	starch, glycogen and chitin)		
	Biological role and clinical significance		
3.3	Amino Acids and Proteins:	05L	08hrs
	• Basic structure, classification of amino acids,		
	• Essential and Non-essential amino acids, Peptide bond,		
	• Protein conformation: Primary, Secondary, Tertiary, Quaternary		
	• Types of proteins – Structural (collagen) and functional proteins		
	(haemoglobin)		
	Biological role and clinical significance		
3.4	Lipids:	04L	05hrs
	• Definition, classification of lipids with examples, ester linkage		
	• Physical and chemical properties of lipids		
	• Saturated and unsaturated fatty acids		
	• Essential fatty acids; Triacylglycerols; Phospholipids (lecithin and		
	cephalin); Steroids (cholesterol)		
	• Biological role and clinical significance		
3.5	Vitamins:	02L	04hrs
	• Water soluble vitamins (e.g. Vit C, Vit B ₁₂)		
	• Lipid soluble vitamins (e.g. Vit A, Vit D)		
	• Biological role and clinical significance		

	SEMESTER IV		
	USZOE1403 (Course-XA) Elective 1		
	Comparative Embryology, Aspects of Human		
	Reproduction, Pollution and its effect on organisms		
	UNIT 1: Comparative Embryology	15L	25hrs
	Objective:		
	> To acquaint the learner with key concepts of embryology.		
	Desired Outcome:		
	> Learner will be able to understand and compare the different		
	types of eggs and sperms		
	> Learner will be able to understand and compare the different		
	pre- embryonic stages		
1.1	Types of Eggs- Based on amount and distribution of yolk	03L	4hrs
1.2	Structure and Types of Sperm	02L	4hr
1.3	Types of Cleavages	02L	4hrs
1.4	Types of Blastulae	02L	4hrs
1.5	Types of Gastrulae	02L	4hrs
1.6	Coelom -Formation and types	04L	6hrs
	UNIT 2: Aspects of Human Reproduction	15L	30 hrs
	Objectives:		
	> To acquaint the learners with different aspects of human		
	reproduction.		
	> To make them aware of the causes of infertility, techniques to		
	overcome infertility and the concept of birth control		
	Desired Outcome:		
	> Learners will able to understand human reproductive		
	physiology		
	▶ Learners will become familiar with advances in ART and		
	related ethical issues.		
2.1	Human reproductive system and hormonal regulation	02L	4hrs
	• Anatomy of human male and female reproductive system		

	Hormonal regulation of reproduction and impact of age on		
	reproduction - menopause and andropause		
2.2	Contraception & birth control	02L	4hrs
	• Difference between contraception and birth control		
	• Natural Methods: Abstinence, rhythm method, temperature		
	method, cervical mucus or Billings method, coitus		
	interruptus, lactation amenorrhea		
	• Artificial methods : Barrier methods, hormonal methods,		
	intrauterine contraceptives, sterilization, termination,		
	abortion		
2.3	Infertility	04L	8hrs
	Female infertility:		
	• Causes - Failure to ovulate; production of infertile eggs;		
	damage to oviducts (oviduct scarring and Pelvic		
	inflammatory disease -PID, TB of oviduct), Uterus (TB		
	of uterus and cervix)		
	• Infertility associated disorders - Endometriosis,		
	Polycystic Ovarian Syndrome (PCOS), Primary ovarian		
	failure (POF), Sexually Transmitted Infections (STIs) -		
	gonorrhoea, chlamydia, syphilis and genital herpes;		
	Antibodies to sperm; Genetic causes- recurrent abortions		
	Role of endocrine disruptors		
2.5	Treatment of infertility	04L	8hrs
	Removal /reduction of causative environmental factors		
	Surgical treatment		
	Hormonal treatment- fertility drugs		
	• Assisted Reproductive Technology (ART) -		
	In vitro fertilization (IVF); Embryo transfer (ET); Intra-		
	Fallopian transfer (IFT), Gamete Intra-Fallopian Transfer		
	(GIFT) &Intra-Zygote Transfer (ZIFT); Intra-cytoplasmic		
	Sperm Injection (ICSI) with ejaculated sperm and sperm		
	retrieved from testicular biopsies; Testicular sperm		
	extraction (TESE).		

	• Sperm bank, cryopreservation of gametes and embryos		
	• Surrogacy		
	UNIT3: Pollution and its effect on organisms	15L	27hrs
	Objective:		
	> To provide a panoramic view of impact of human activities		
	leading to pollution and its implications.		
	Desired Outcome:		
	> The learners will be sensitized about the adverse effects of		
	pollution and measures to control it.		
3.1	Air Pollution	03L	6hrs
	• Types and sources of air pollutant		
	• Effects of air pollution on organisms, its control and		
	abatement measures		
3.2	Water Pollution	03L	6hrs
	• Types and sources of water pollutant		
	• Effects of water pollution on organisms, its control and		
	abatement measures		
3.3	Soil Pollution	03L	4hrs
	• Types and sources of soil pollutant		
	• Effects of soil pollution on organisms, its control and		
	abatement measures		
3.4	Sound pollution	01L	3hrs
	• Different sources of sound pollution		
	• Effects of sound pollution on organisms, its control and		
	abatement measures		
3.5	Pollution by radioactive substances	01L	2hrs
3.6	Pollution by solid wastes	02L	4hrs
	• Types and sources,		
	• Effects of solid waste pollution, its control and abatement		
	measures		
3.7	Pollution – Climate Change and Global Warming	02L	2hrs

	USZOE2403 (Course-XB) Elective 2		
	Dairy Industry, Sericulture and Aquaculture		
	UNIT 1: Dairy Industry	15L	30hrs
	Objectives:		
	> To comprehend the functioning of various aspects of		
	dairy industry.		
	> To study different indigenous and exotic cattle breeds		
	including buffalo breeds of India.		
	> To develop an understanding of the different systems of		
	breeding and various aspects dealing with housing of		
	dairy animals.		
	Desired Outcome:		
	Learner would gain knowledge on the functioning of		
	various aspects of dairy industry, indigenous, exotic		
	cattle and buffalo breeds in India.		
	Learner will study different systems of breeding and		
	gain information regarding various aspects pertaining		
	to housing of dairy animals.		
1.1	Indian Cattle breeds – Origin, distribution, distinguishing	02L	4hrs
	characters and economic uses:		
	Malvi		
	• Hariyana		
	• Deoni		
	Red sindhi		
	• Khillari		
1.2	Exotic breeds - Origin, distribution, distinguishing characters	02L	4hr
	and economic uses:		
	• Jersy		
	• Holstein		
1.3	Indian buffalo breeds - Origin, distribution, distinguishing	02L	4hrs

	characters and economic uses:		
	• Nagpuri		
	• Bhadawari		
	• Murrah		
	• Jafrabadi		
1.4	Systems of inbreeding and crossbreeding	03L	6hrs
1.5	Maintenance of dairy farm	02L	4hrs
1.6	Weaning of calf, castration and dehorning	02L	4hrs
1.7	Diseases and control	02L	4hrs
	UNIT 2: Sericulture	151	30 hrs
	Objectives:	101	
	To comprehend the functioning of sericulture industry		
	and its scope in India		
	 To study the varieties of silk-worms and host plants. 		
	 To critically study the life history and rearing of 		
	Bombyx mori, harvesting, processing of cocoon,		
	production of silk and diseases afflicting silk-worms.		
	Desired Outcome:		
	Learner would understand the basics of the functioning		
	of sericulture industry and its scope in India.		
	Learner shall gain knowledge on the varieties of silk-		
	worms, host-plants and aspects on silk extraction and		
	the diseases afflicting silk-worms.		
2.1	Introduction and scope of sericulture	02L	4hrs
2.2	Varieties of silk worm, host plants	02L	4hrs
2.3	Life history and rearing of <i>Bombyx mori</i>	02L	8hrs
2.4	Harvesting and processing of cocoon	02L	4hrs

2.5	Reeling and extraction of silk	03L	4hrs
2.6	Diseases and control measures	03L	4hrs
	UNIT3: Aquaculture	15L	27hrs
	Objectives:		
	> To comprehend various kinds of aquaculture practices		
	and its scope as fishery resource in India.		
	To study various techniques employed in aquaculture		
	practices		
	Desired Outcome:		
	Learner shall understand the aquaculture practices and		
	the scope of fishery in India.		
	Learner would gain knowledge of various techniques		
	employed in aquaculture practices.		
3.1	Pisciculture:	05L	6hrs
	• Definition and scope of fishery resources in India		
	• Finfish culture – monoculture and polyculture		
	• Role of exotic fishes in polyculture		
	Cage culture		
	• Fish seed transport		
	• Fish diseases symptoms and control		
3.2	Prawn/shrimp culture: Sources, seed, culture methods –	05L	6hrs
	• Giant fresh water prawn (Macrobrachium rosenbergii)		
	• White shrimp (<i>Penaeus vannamei</i>)		
3.3	Pearl culture:	05L	4hrs
	• Pearl producing species and their distribution		
	• Pearl culture methods		
	Composition of pearl		
	-		

	SEMESTER IV	
	Practical USZOP4 (Course - VIII)	
1	Study of population density by Line transect method & Quadrant method	
	and calculate different diversity indices.	
	Index of Dominance	
	• Index of frequency	
	• Rarity Index	
	• Shannon Index	
	• Index of species diversity	
2	Study of prokaryotic cells (bacteria) by Crystal violet staining technique	
3	Study of eukaryotic cells (WBCs) from blood smear by Leishman's stain	
4	Identification and study of fossils:	
	Arthropods: Trilobite	
	Mollusca: Ammonite	
	• Aves: Archaeopteryx	
5	Identification of :	
	• Allopatric speciation (Cyprinodont species)	
	• Sympatric speciation (Hawthorn fly and Apple maggot fly)	
	• Parapatric speciation (Snail)	
6	Bibliography/ Abstract writing	
7	Preparation of Power Point Presentation based on research paper.	

	SEMESTER IV
	Practical USZOP4 (Course - IX)
1	Study of permeability of cell through plasma membrane (osmosis in
	blood cells)
2	Measurement of cell diameter by occulometer (by using permanent
	slide)
3	Qualitative tests for carbohydrates (Molisch's test, Benedicts test,
	Barfoed's test, Anthrone test)
4	Qualitative tests for protein (Ninhydrin test, Biuret test, Millon's test,
	Xanthoproteic test)
5	Qualitative test for lipids (Solubility test, Sudan III test)
6	Study of rancidity of lipids by titrimetric method
	Stady of functions of the first of the first of
7	Ultrastructure of cell organelles (Electron micrographs) of:
	• Nucleus
	• Endoplasmic reticulum (Smooth and Rough)
	Mitochondria.
	Golgi apparatus
	• Lysosomes
8.	Study of clinical disorders due to carbohydrates, proteins and lipid
	imbalance (Photograph to be provided / symptoms to be given and
	disorder to be identified):
	• Hyperglycemia
	• Hypoglycemia
	• Anemia
	• Kwashiorkar
	• Marasmus
	Fatty Liver

	SEMESTER IV
	Practical USZOE1P4 (Course - XA)
1	Study of air microflora.
2	Estimation of dissolved oxygen from the given water sample.
3	Estimation of salinity by refractometer from the given water sample.
4	Estimation of conductivity by conductometer from the given water sample.
5	Study of physical properties of soil: temperature, moisture and texture
6	Study of chemical properties of soil- pH, organic matter
7	Study of sound pollution monitoring device
8	Detection of pregnancy from given sample of urine
9	Study of birth control measures applicable to humans – IUD, condom and hormonal
	pills.
10	Study of the following permanent slides, museum specimens and materials
	Mammalian sperm and ovum
	• Types of Egg– fish, frog and hen
	• Cleavage, blastula and gastrula (Amphioxus, Frog and Bird)
11	Review writing based on programmes telecast by Doordarshan, Gyandarshan,
	UGC programmes or other media sources
12	Study of natural ecosystem and field report of the visit

	SEMESTER IV
	Practical USZOE2P4 (Course - XB) – Elective 2
1	Estimation and comparison of protein content in Cow and Buffalo milk sample
2	Estimation and comparison of fat content in Cow and Buffalo milk sample
3	Preparation of falooda
4	Preparation of caramel custard
5	Restraining devices used in cattle farming- Halters, gags, bull-rings, muzzles, cradle, crush and ropes.
6	Study of life cycle of <i>Bombyx mori</i>
7	Study of commercially important fishery. (Catla, Rohu, Catfish, Mackeral, Pomfret, Bombay duck, Prawn/Shrimp, Crab, Lobster, Edible oyster)
8	Study of Crustacean fishery – common characters and sexual dimorphism in lobster (<i>Panulirus spp.</i>), prawn (<i>Penaeus spp.</i>), crab (<i>Scylla spp.</i>)
9	Visit to dairy farm /aquaculture/ fish landing centre/fishery institute and submit report of the same

For Additional and Latest Information on the topics, various Web Sites can be visited.

Note: The practicals may be conducted by using specimens authorised by the wildlife and such other regulating authorities though it is strongly recommended that the same should be taught by using photographs/audio-visual aids/ simulations / models, etc. as recommended by the UGC and as envisaged in the regulations of the relevant monitoring bodies. No new specimens, however, shall be procured for conducting practicals mentioned here in above.

There shall be at least one excursion / field trip.

N. B:

I) It is pertinent to note that we have to adhere strictly to the directions as given in the UGC Circular F14-4/2006 (CPP-II).

II) Apart from the Institutional Animal Ethics Committee (IAEC) and any other Committee appointed by a Competent Authority/Body from time to time, every college should constitute the following Committees:

- 1) A Committee for the Purpose of Care and Supervision of Experimental Animals (CPCSEA) and
- 2) A Dissection Monitoring Committee (DMC)

Composition of DMC shall be as follows:

- i) Head of the Concerned Department (Convener/Chairperson)
- ii) Two Senior Faculty Members of the concerned Department
- iii) One Faculty of related department from the same College

One or two members of related department from neighboring colleges

USE OF ANIMALS FOR ANY EXPERIMENT/DISSECTION/MOUNTING IS BANNED. SIMULATIONS, AUTHORISED PERMANENT SPECIMENS/SLIDES, CHARTS, MODELS AND OTHER INNOVATIVE METHODS ARE ENCOURAGED.

Semester IV References and additional reading

USZO401 (COURSE-VIII)

- 1. Theory of Evolution- Smith, Cambridge Press, and Low price Ed
- 2. Evolution Strickberger, CBS publication
- 3. Evolution- P. S. Verma and Agarwal
- 4. Introduction to Evolution by Moody
- 5. Biology. E. P. Solomon, L. R. Berg, D. W. Martin, Thompson Brooks/Cole
- Biology The Unity and Diversity of Life. C. Starr, R. Taggart, C. Evers, L. Starr, Brooks/Cole Cengage learning International Edition
- Research Methodology, Methods and Techniques- by C.R. Kothari, Wiley Eastern Ltd. Mumbai
- 8. Practical research planning and design 2^{nd} edition- Paul D Leedy, Macmilan Publication

USZO402 (COURSE - IX)

- 1. Cell Biology, Singh and Tomar, Rastogi Publication.
- Cell and Molecular Biology, E.D.P De Robertis and E.M.R Robertis, CBS Publishers and Distributors.
- 3. The cell, A molecular approach, Goeffrey M. Coper ASM Press Washington D.C.
- 4. A textbook of cytologym Suruchi Tyagi Dominant Publishers and Distributors New Delhi.
- 5. Cell and molecular biology, Gupta P. K., Rastogi Publication, India.
- 6. Cell Biology, Pawar C.B. Himalaya publication
- 7. Molecular Biology of the cell, $(6^{th}ed)$ by the Insertus
- 8. Principles of Biochemistry, 2005, 2nd and 3rd edn. Lehninger A.L. Nelson D.L. and Cox M.M,
- 9. Biochemistry, Dushyant Kumar Shrma, 2010, Narosa Publishing house PVT.Ltd.
- 10. Fundamentals of Biochemistry, Dr AC Deb, 1983, New Central Book Agency Ltd.
- 11. A Textbook of Biochemistry, 9th edition, Dr. Rama Rao A.V.S.S and Dr A Suryalakshmi.
- 12. Biochemistry- G Zubay, Addison Wesley, 1983
- 13. Biochemistry, L Stryer, 3rd/4th/5th ed, 1989, Freeman and Co. NY
- Harper's Biochemistry,1996, 26th edition, Murray R.K. Granner D.K. Mayes P.A. Rodwell V.M. Hall international USA
- 15. Outline of Biochemistry, 1976, E.E. Conn and P.K. Stumpf. John Wiley and Sons USA

USZOE1403 (COURSE-XA)

References of Elective 1

- 1. Developmental Biology- 5th Edition, Scot F. Gilbert, Sinauer Associates Inc.
- 2. Developmental Biology- Subramoniam T., Narosa Publishers.
- 3. Developmental Biology-BerrilN.J., Tata McGraw –Hill Publication.
- 4. Essential Reproduction-Martin H. Johnson, Wiley-Blackwell Publication.
- 5. Chick Embryology- Bradley M. Pattern.
- 6. Embryology-Mohan P. Arora.
- 7. Chordate Embryology-Dalela, Verma and Tyagi
- 8. Human Anatomy and Physiology. E. L. Marieb, Pearson Education Low Price Edition
- 9. Biological Science. Taylor, Green and Stout. Cambridge Publication
- 10. Biology. E. P. Solomon, L. R. Berg, D. W. Martin, Thompson Brooks/Cole
- 11. Human Biology-Daniel D. Chiras Jones and Bartlett
- 12. The Physiology of Reproduction Vol I & II E. K. Nobil and JU. D. Neil, Raven Press, New York.
- 13. Air Pollution, Kudesia V. P. Pragati Prakasan, Meerut
- 14. Fundamentals of Air Pollution Daniel A. Vallero, Academic press 5th Edition
- 15. Principles and Practices of Air Pollution Control and Analysis J. R. Mudakanil K International Pub. House Pvt. Ltd.
- 16. Text Book of Air Pollution and its Control, S. C. Bhatia Atlantic
- 17. Water Pollution, Kudesia V. P., Pragati Prakasan, Meerut
- A text book of Environmental Chemistry and Pollution Control, S. S. Dogra, Swastic Pub, New Delhi
- Practical Methods for water and Air Pollution Monitoring, S. K. Bhargava, New Age International
- 20. Hand Book of Water and waste water Analysis, Kanwaljit Kaur, Atlantic
- 21. Aquatic Pollution by Edward A. Laws
- 22. Environmental Science and Technology, Stanely E. Manahan
- 23. Environmental Chemistry, A. K. De, New Age International
- 24. A Text Book of Environmental Studies, Gurdeep R.Chatwal, Harish Sharma, Madhu Arora,

USZOE2403 (COURSE-XB)

References of Elective 2

- 1. Principles of Dairy Chemistry R. Jenness, S. Patton John Wiley and Sons Inc.
- 2. Fundamentals of dairy chemistry B.H. Webb, A.H. Johnson, J.A. Alford Avi Pub. Co.
- 3. Food Chemistry Owen R. Fennema CRC Press
- 4. Food Chemistry John M. De Man Springer
- 5. Technology of Dairy Products Early, Ralph. Academic & Professional, 1998

6. Quality of milk production and processing technology D.K. Thompkinson and lathasabikhi New India Publishing agency, New delhi

- 7. Outlines of Dairy Technology Sukumar De Oxford University Press, New delhi
- 8. Food Microbiology William C. Frazier, dennis C. Westoff Tata Mcgrew Hill publishing

Company Ltd. New Delhi

- 9. Applied Dairy Microbiology Elmer H. Marth, James L. Steele CRC Press
- 10. Dairy plant engineering and management Tufail Ahmed Kitab Mahal
- 11. Latest Aquaculture, Principles and Practices by Pillay T.V.R. Fishing New Books (1988).
- 12. Course Manual in Fishing Technology by Latha Shenoy, CIFE, Versova, Mumbai.
- 13. Prawn and Prawn Fisheries by Kurian and Sebestian

MARKING SCHEME OF EXAMINATION (THEORY)

- (a) External assessment of one hundred (100) marks per course per semester should be conducted as per the following skeleton question paper pattern.
- (c) One practical examination of fifty (50) marks per course each should be conducted at the end of every semester.

SKELETON- EXAMINATION PATTERN FOR THE ABOVE SYLLABUS

All Questions are compulsory

Figures to the right indicate full marks

Draw neat and labeled diagrams wherever necessary

Time: 3 hours

Total Marks: 100

Q1	Objective questions*	20 marks
Q.2.	UNIT 1	20 marks
	a. Answer any one of the two (10 marks)	
	b. Answer any two out of the four (5 marks each)	
Q.3.	UNIT 2	20 marks
	a. Answer any one of the two (10 marks)	
	b. Answer any two out of the four (5 marks each)	
Q.4.	UNIT 3	20 marks
	a. Answer any one of the two (10 marks)	
	b. Answer any two out of the four (5 marks each)	
Q.5.	Answer any four out of six	20 marks
	Unit 1 - (Two notes of five marks each)	
	Unit 2 - (Two notes of five marks each)	
	Unit 3- (Two notes of five marks each)	

*Note: For Question No. 01 it is recommended to have objective questions on all units, such as -

- (a) Match the column (b) MCQ
- (c) Give one word for (d) True and False
- (e) Define the term (f) Answer in one sentence

PRACTICAL (SEMESTER III)

USZOP3 (Course - V)

Skeleton-Practical Examination Question Paper Pattern

Time: 2hrs 30 min	Marks: 50
Major Question	15
Q1. Extraction and detection of DNA	
OR	
Q1. Extraction and detection of RNA	
Minor Question	07
Q2. Mounting of Barr bodies / Polytene chromosomes	
OR	
Q2. Study of mitosis-Temporary squash preparation of Onion root tip	
OR	
Q2. Detection of blood groups and Rh factor	
Q3. Problems based on Genetics and Molecular biology	
(Transcription /Genetic code) (01 problem each)	10
Q4. Identification	08
A. Chromosome morphology	
B. Pedigree analysis	
Q5. Viva	05
Q6. Journal	05

PRACTICAL (SEMESTER III)

USZOP3 (Course - VI)

Skeleton-Practical Examination Question Paper Pattern

Time: 2hrs 30 min	Marks: 50
Major Question	15
Q1. Urine analysis—Normal and abnormal constituents	
Minor Question	10
Q2. Detection of ammonia excreted by fish in aquarium water	
OR	
Q2. Detection of uric acid from excreta of Birds	
OR	
Q2. Mounting of striated and non-striated muscle fibre	
Q3. Identification	15
a. Nutritional apparatus	
b. Respiratory structures	
c. Locomotory organs	
d. Study of hearts	
e. Permanent slides on reproduction	
Q4. Viva	05
Q5. Journal	05

PRACTICAL (SEMESTER III)

USZOE1P3 (Course - VIIA) – Elective 1

Skeleton - Practical Examination Question Paper Pattern

Time: 2 hrs 30 min

Marks: 50

Major Question	12
Q1. Extraction of casein from milk and its qualitative detection	
OR	
Q1. Preparation of paneer from the given milk sample.	
OR	
Q1. Measurement of density of different samples of milk by lactometer	
Minor Question (Sketch and label)	08
Q2. Life cycle of honey bee	
OR	
Q2. Mouthparts of honey bee	
OR	
Q2. Legs of honey bee	
OR	
Q2. Sting apparatus of honey bee	
Q3. Identify and describe as per instructions	15
a. Ethology	
b. Protozoan parasite	
c. Helminth parasite	
d. Ectoparasite	
e. Parasitic adaptation	
Q4. a) Project submission	06
b) Viva based on project	04
Q5. Journal	05

PRACTICAL (SEMESTER III) USZOE2P3 (Course - VIIB) – Elective 2

Skeleton-Practical Examination Question Paper Pattern

Marks: 50

15

15

05

Time: 2 hrs 30min

Major Question Q1. Identification (5 Marks each) a) Aquarium equipment. b) Type of pest (Any insect) c) Other pest Q.2. Identification (3 Marks each) a) & b) Types of pest control c) Hybrid animal d) Incredible animal e) Endangered animal Q.3. Submission of photographs of any five amazing animals with description.

Q4. a) Project submission	06
b) Viva based on project	04
Q5. Journal	05

PRACTICAL (SEMESTER IV) USZOP4 (Course - VIII)

Skeleton - Practical Examination Question Paper Pattern

Marks: 50

Time: 2 hrs 30 min

Major Question

Q1. Study Population density by Line transect or Quadrant method and calculate Biodiversity	
Indices. (Any 2)	12
Minor Question	08
Q2. Prepare a smear to show prokaryotic cell.	
OR	
Q2. Prepare a smear to show eukaryotic cell.	
Q3. Identify and describe as per instructions.	08
a) Fossil b) Speciation	
Q4. From the given article, prepare the bibliography/ abstract.	06
Q5. Submission of power point presentation.	06
Q6. Viva.	05
Q.7. Journal.	05

PRACTICAL (SEMESTER IV)

USZOP4 (Course - IX)

Skeleton - Practical Examination Question Paper Pattern

Marks: 50

Time: 2 hrs 30 min

Major Question 15 Q1. Study of osmosis in R.B.Cs. OR Q1. Measurement of cell diameter by occulometer using permanent slide. **Minor Question** 10 Q2. Qualitative tests for carbohydrates (Molisch's test, Benedicts test, Fehling's test, Anthrone test) OR Q2. Qualitative tests for protein (Ninhydrin test, Biuret test, Millon's test, Xanthoprotein test) OR Q2. Qualitative test for lipid (Solubility test, Sudan III test) OR Q2. Estimation of rancidity of lipids by titrimetric method Q3. Identify and describe as per instructions 15 Ultrastructure of cell organelles (a, b & c) ٠ Clinical disorders (d & e) ٠ Q4. Viva 05

Q5. Journal 05

PRACTICAL(SEMESTER IV)

USZOE1P4 (Course - XA) – Elective 1

Skeleton - Practical Examination Question Paper Pattern

Marks: 50

Time: 2 hrs 30 min

Major Question	12
Q1. Estimation of Dissolved Oxygen from the given water sample.	
OR	
Q1. Detection of pregnancy from given sample of urine.	
OR	
Q1. Determination of organic matter from the given soil sample.	
Minor Question	08
Q2. Estimation of salinity by refractometer from the given water sample	
OR	
Q2. Estimation of conductivity by conductometer from the given water sample	
OR	
Q2. Determination the pH of the given soil sample	
OR	
Q2. Determine the texture of the given soil sample	
Q3. Identify and describe as per instructions	15
• Permanent slides (a &b)	
• Birth control measure (c)	
• Fishery (d & e)	
Q4. a) Field report submission	06
b)Viva based on field report	04
Q5. Journal	05

PRACTICAL (SEMESTER IV)

USZOE2P4 (Course - XB) Elective 2

Skeleton - Practical Examination Question Paper Pattern

Time: 2 hrs 30 min	Marks: 50
Major Question	15
Q1.Comparison of protein content from cow and buffalo milk	
OR	
Q.1 Comparison of fat content from cow and buffalo milk	
Minor Question	08
Q.2 Preparation of falooda	
OR	
Q.2 Preparation of caramel custard	
Q.3 Identification (3 marks each)	12
a) Restraining device	
b) Any stage of life cycle of <i>Bombyx mori</i>	
c) Commercial fishery	
d) Crustacean fishery	
Q4. a) Project submission	06
b) Viva based on project	04
Q5. Journal	05

MODEL QUESTION BANK SEMESTER III

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception

USZO301 (COURSE - V)

Unit1 (10 Marks)

- 1. Define genetics and explain its scope and importance.
- 2. Explain Mendel's laws of inheritance
- 3. Describe in detail the monohybrid cross and state the Mendelian principle of inheritance derived from it. Add a note on Co-dominance
- 4. Describe in detail dihybrid cross and state the Mendelian principles of inheritance derived from it
- 5. Discuss in brief inheritance of Mendelian phenotypic traits in humans.
- 6. Describe incomplete dominance with a suitable example
- 7. Describe Co-dominance with a suitable example
- 8. What is epistasis? Give a detailed account of double dominant epistasis
- 9. What is epistasis? Give a detailed account of recessive epistasis
- 10. What is epistasis? Give a detailed account of dominant epistasis
- 11. What is epistasis? Give a detailed account of double recessive epistasis
- 12. Explain the pattern of inheritance of recessive and dominant lethal alleles
- 13. Explain the inheritance of multiple alleles with the help of a suitable example
- 14. Describe polygenic inheritance with reference to skin colour and eye colour in man
- 15. Compare pleiotropy and polygenic inheritance
- 16. Explain the phenomenon of linkage with respect to Morgan's Experiment. Add a note on the differences between complete and incomplete linkage
- 17. Describe the pattern of inheritance of blood group and Rh factor in man
- 18. Explain the cytological basis and molecular mechanisms of crossing over
- 19. Explain pedigree analysis of X-linked recessive traits

Unit1 (5 Marks)

- 1. Describe the classical concept of gene
- 2. Explain the modern concept of gene
- 3. Differentiate between (Any two):
 - (a) Genotype and phenotype of an organism
 - (b) Dominant and recessive traits
 - (c) Gene and genome
 - (d) Homozygous and heterozygous
 - (e) Monohybrid and Dihybrid cross
 - (f) Incomplete Dominance and Co-dominance
 - (g) Multiple alleles and Polygenes
 - (h) Test cross and Backcross
- 4. Write a note on the chromosome theory of inheritance
- 5. Describe co-dominance with a suitable example
- 6. Give an account of the symbols used in human Pedigree analysis
- 7. Characteristics of autosomal dominant traits
- 8. Characteristics of X-linked recessive traits
- 9. Characteristics of autosomal recessive traits
- 10. Characteristics of X-linked dominant traits
- 11. Intermediate lethal alleles
- 12. Explain the inheritance of skin colour in humans
- 13. Write a note on pleiotropy.

Unit 2 (10 Marks)

- 1. Explain the structure of eukaryotic chromosome
- 2. Classify chromosomes on the basis of the position of centromere
- 3. Explain any two mechanisms of chromosomal basis of sex determination
- 4. Explain the inheritance of colour blindness in man
- 5. Explain sex determination in honey bee and Drosophila

Unit 2 (5 Marks)

- 1. Describe the terms euchromatin and heterochromatin
- 2. Write a note on polytene chromosomes
- 3. Write a note on Lampbrush chromosomes
- 4. Write a note on salivary gland chromosome of Drosophila
- 5. Write a note on Balbiani rings
- 6. Explain endomitosis
- 7. Write a note on Gynandromorphs
- 8. Explain the role of environment on sex determination
- 9. Explain the role of hormones in sex determination
- 10. Explain hypertrichosis
- 11. Differentiate between sex limited and sex influenced genes
- 12. Differentiate between human X and Y chromosomes
- 13. Differentiate between autosomes and sex chromosomes
- 14. Write a note on Lyons hypothesis
- 15. What are Barr bodies? Give a scientific reason that Barr bodies are present only in women and not in men
- 16. Give a scientific reason that Y chromosome is a sex determining chromosome in man
- 17. Explain parthenogenesis
- 18. Give scientific reason that the X-linked genes affect males more than females in human being

Unit 3 (10 marks)

- 1. Describe Griffith's transformation experiment
- 2. Explain Avery, Macleod, McCarty's experiment
- 3. Give an account of Hershey Chase experiment of bacteriophage infection
- 4. Write a note on types of DNA
- 5. Explain RNA as a genetic material
- 6. Describe the process of DNA replication
- 7. Explain in detail the process of transcription
- 8. Explain in detail the process of translation
- 9. What is gene expression? Describe the regulation of genes with lac operon model

Unit 3 (5 Marks)

- 1. Chemical composition of nucleic acid
- 2. A and B DNA
- 3. Plasmid
- 4. Function of rRNA
- 5. Function of mRNA
- 6. Function of tRNA
- 7. Genetic code
- 8. One gene-one enzyme hypothesis
- 9. Concept of operon
- 10. ZDNA
- 11. H DNA
- 12. Chromosomal DNA in prokaryotes
- 13. Mitochondrial DNA
- 14. DNA in chloroplast

MODEL QUESTION BANK SEMESTER – III

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception.

USZO302 (COURSE-VI)

Unit 1 (10 Marks)

- 1. Explain in detail the digestive system of cockroach.
- 2. Describe the digestive system of pigeon.
- 3. With the help of a labeled diagram describe the structure and functions of ruminant stomach.
- 4. Explain the physiology of digestion in cockroach.
- 5. Give an account of the enzymes involved in the process of digestion in cockroach.
- 6. With the help of a labeled diagram describe the structure of mammalian kidney.
- 7. Give a detailed account of process of urine formation in man.

Unit 1 (5 Marks)

- 1. Write a note on nutritional apparatus in amoeba.
- 2. Describe briefly gastrovascular cavity in hydra.
- 3. Write a note on wheel-organ of Amphioxus.
- 4. Write a note on structure of ruminant stomach.
- 5. Write short note on digestion of proteins with respect to man.
- 6. Write short note on digestion of carbohydrates with respect to man
- 7. Write short note on digestion lipids with respect to man
- 8. Write short note contractile vacuoles in protozoa.
- 9. Write a note on flame cells.
- 10. Describe briefly excretory and osmoregulatory structures in cockroach.
- 11. Diagrammatic representation of structure of mammalian kidney.
- 12. Write a note on Ammonotelic organisms.
- 13. Write a note on Ureotelic organisms.
- 14. Write a note on Uricotelic organisms.
- 15. Schematic diagram of ultrafiltration in mammalian kidney.

Unit 2 (10 Marks)

- 1. Describe briefly air sacs in pigeon.
- 2. Describe briefly the process of cellular respiration inhuman
- 3. Describe briefly the process of respiration inhuman
- 4. Give a brief account of types of circulating fluids present in animals.
- 5. Describe briefly mechanism of working of heart.
- 6. Describe briefly the heart of shark/fish.
- 7. Describe briefly the heart of frog.
- 8. Describe briefly heart of crocodile.
- 9. Give a brief account of heart of man.

Unit 2 (5 Marks)

- 1. Write short note on cutaneous respiration.
- 2. Write a note on book lungs in spider.
- 3. Explain the structure of gills of bony fish
- 4. Describe briefly lungs as respiratory organs in frog.
- 5. Describe briefly lungs as respiratory organs in man.
- 6. Write short note on open circulation.
- 7. Write short note on closed circulation.
- 8 Write a note on heart of cockroach
- 10. Write a note on heart of earthworm

Unit 3(10 Marks)

- 1. Describe different types of neurons on the basis of structure and function.
- 2. Explain conduction of nerve impulse.
- 3. Briefly describe synaptic transmission.
- 4. Explain Sol-Gel theory of amoeboid movement.
- 5. Describe ciliary movement in Paramecium.
- 6. Give an account on types of wings in insects.
- 7. Describe different types of fins in fishes.
- 8. Describe sliding filament theory.
- 9. Describe briefly asexual reproduction in animals.
- 10. Describe the structure and function of tube feet.

- 11. Describe spermatogenesis.
- 12. Describe oogenesis.
- 13. Describe briefly the structure of mammalian gametes.
- 14. Give a brief on types of fertilization.

Unit 3 (5 Marks)

- 1. Write a note on irritability in *Paramecium*.
- 2. Write a note on resting potential of nerve membrane.
- 3. Write a note on action potential of nerve membrane.
- 4. Describe different types of neurons on the basis of structure.
- 5. Describe briefly different types of neurons on the basis of functions.
- 6. Describe the structure of synapse.
- 7. Describe striated muscle fibre.
- 8. Describe the structure of cilia.
- 9. Give an account on types of legs in insects.
- 10. Write a note on ovo-vivipariry.
- 11. Write a note on viviparity.
- 12. Write a note on oviparity.
- 13. Describe the structure of mammalian egg.
- 14. Describe the structure of mammalian sperm.
- 15. Describe the formation of gemmule in sponges.
- 16. Write a note on budding as asexual reproduction in animals.
Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception.

USZOE1303 (COURSE - VIIA) – Elective 1

Unit 1 (10 marks each)

- 1. How do honey bees communicate for foraging?
- 2. What is classical conditioning? Explain with an example.
- 3. What is imprinting? Explain different types of imprinting.
- 4. What do you mean by animal learning? Describe any two types of learning.
- 5. Describe the various ways in which ants communicate.
- 6. What is the significance of mimicry and warning coloration?
- 7. What is mimicry? Explain different types of mimicry with examples.
- 8. What is displacement activity? In what situations do displacement activities occur? Explain with examples.
- 9. Comment on any two aspects of non-human primate social behaviour.

Unit 1 (5 marks)

- i. Mimicry
- ii. Innate learning
- iii. Acquired learning
- iv. Warning colouration
- v. Imprinting
- vi. Classical Conditioning
- vii. Territorial behaviour
- viii. Schooling behaviour
 - ix. Altruism
 - x. Kinship
- xi. Displacement activities
- xii. Ritualization

Unit 2 (10 Marks)

1. Give an account of the life history and pathogenecity of the parasite causing amoebic dysentery.

- 2. Describe the life history of Taenia solium.
- 3. Give an account of parasitic adaptive features of Taenia solium.
- 4. Give an account of the life history of Fasciola hepatica.
- 5. Give an account of the life history of filarial worm and discuss its pathogenic effects.
- 6. Describe the life history of bedbug and suggest some control measures.
- 7. Give an account of the life history of Sarcoptes scabiei.
- 8. Give an account of the life history of head louse Pediculus.
- 9. What is bird flu? How it spreads and what are its symptoms?
- 10. How would you control the transmission of anthrax among humans?
- 11. How is anthrax transmitted to man?

- 1. Describe the structure of *E. histolytica*.
- 2. Write a brief note on amoebiasis.
- 3. Write a short note on pathogenecity of E. histolytica.
- 4. Briefly describe the life cycle of *E. histolytica*.
- 5. Illustrate the complete life history of *T. solium* with the help of diagram only.
- 6. What is the effect of Fasciola on the hosts?
- 7. Describe the life cycle of Wuchereria bancrofti.
- 10. What is host specificity?
- 11. What are the signs and symptoms of bird flu?
- 12. How is rabies transmitted in human?
- 13. What are the preventive measures to be taken to prevent infection of rabies virus?
- 14. What is toxoplasmosis and what are its causes?
- 15. Write notes on:
 - i. Parasitic adaptations in endoparasites
 - ii. Cysticercus or bladder worm.
 - iii. Pathogenecity of Wuchereria
 - iv. Control measures of bedbug.
 - v. Types of hosts

Unit 3 (10 Marks)

- 1. What does the modern method of apiculture include? Explain in brief.
- 2. How is an artificial bee hive constructed?
- 3. How do you select the flora and bee species for apiculture?
- 4. Enumerate the advantages of vermiculture
- 5. Describe any two methods of vermiculture.
- 6. Describe the processing of raw milk.
- 7. Write a brief note on Type A1 and A2 cow milk.

- 1. State the economic importance of honey and beeswax.
- 2. What are the disadvantages of the indigenous method of apiculture?
- 3. How does the wax moth cause damage to the honey comb?
- 4. Name any two bee enemies and explain how they harm the bees.
- 5. Give an account of the commonly found species of honey bee in India.
- 6. What are the advantages of the modern method of apiculture?
- 7. Which type of flora is beneficial for apiculture?
- 8. Which type of bee is suitable for apiculture?
- 9. What is the chemical composition of honey?
- 10. What is the suitable material for culturing earthworms?
- 11. What are the advantages of processing dairy products?
- 12. What is whole milk and toned milk? How is toned milk prepared?

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception.

USZOE2303 (COURSE - VIIB)

Unit 1 10 mark each

- 1. Give a brief account on exotic species used in aquarium.
- 2. Give a brief account on endemic species used in aquarium.
- 3. Give sexual dimorphism in fresh water fishes along with examples.
- 4. Give sexual dimorphism in marine water fishes along with examples.
- 5. Give a brief account on feed used in aquarium.
- 6. Give a brief account on fish transportation in aquarium.

Unit 2 (10 mark each)

- 1. Explain agricultural pests along with suitable example.
- 2. Explain household pests along with suitable example.
- 3. Explain stored grains pests along with suitable example.
- 4. Explain structural pests along with suitable example.
- 5. Explain veterinary pests along with suitable example.
- 6. Explain forestry pests along with suitable example.

Unit 3(10 mark questions):

- 1. Give a brief account on Blue Mormon butterfly and Striped Tiger butterfly
- 2. Describe the behaviour of Octopus and spider as most dedicated mothers in the world.
- 3. Describe marvellous characters of fan throated lizard and flying frog.
- 4. Describe marvellous characters of Mantis shrimp.
- 5. Give a brief account on Malabar giant squirrel
- 6. Describe marvellous characters of the Purple (Joker) crab and lesser flamingo.
- 7. Describe marvellous characters of the Stabbing Shark and Crime fighting gecko.
- 8. Describe marvellous characters of the Gharial and the Matilda Viper

Unit 1 (5 Marks)

Write short note on:-

- 1. Budgeting for setting up of an aquarium
- 2. Fish packing
- 3. Formulated fish feed
- 4. Gold fish
- 5. Molly
- 6. Guppy

Unit 2(5 Marks)

Write short note on:-

- 1. Jowar stem borer
- 2. Brinjal fruit borer
- 3. Aphids
- 4. Rice weevil.
- 5. Non-insect pests
- 6. Cultural control of pests
- 7. Physical control of pests
- 8. Mechanical control of pests
- 9. Chemical control of pests
- 10. Biological control of pests
- 11. Concept of IPM

Unit 3(5 Marks)

Write short note on the amazing characters in following amazing animals.

- 1. Blue Mormon butterfly
- 2. Striped Tiger butterfly
- 3. Mudskipper
- 4. Komodo dragon
- 5. Pebble toad
- 6. Lesser flamingo
- 7. Great white pelican
- 8. Drongo

- 9. Malabar giant squirrel
- 10. Cheetah
- 11. Octopus

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception

USZO401 (COURSE - VIII)

Unit 1 (10 Marks)

- Write explanatory notes on: 1. Lamarckism 2. Darwinism and Neo Darwinism
 Mutation Theory 4. Modern Synthetic theory 5. Weismann's germplasm theory
- 2. Discuss evidences in favour of organic evolution by giving examples of geographical distribution
- 3. Discuss evidences in favour of organic evolution by giving examples based on genetic studies.
- 4. Discuss evidences in favour of organic evolution by giving examples based on physiological studies.
- 5. Give a brief account on the origin of eukaryotic cell

Unit 1 (5 Marks)

- 1. Describe Miller-Urey experiment simulating Chemical evolution.
- 2. Describe chemical evolution as postulated by the Haldane and Oparin theory
- 3. Write short notes on: 1. Mutation Theory 2. Modern Synthetic theory

- Define the term 'population genetics'. Describe in brief the various evolutionary forces that tend to disturb genetic equilibrium and introduce changes in the gene pool of a population
- 2. State Hardy Weinberg's law of equilibrium and discuss its salient features
- 3. Give an account of the different factors involved in speciation
- 4. Describe the different types of speciation
- 5. Explain the role of geographic isolation in the development of new species
- 6. Explain the role of reproductive isolation in the development of new species
- 7. Discuss the pre-zygotic barriers responsible for reproductive isolation

- 8. Discuss the post-zygotic barriers which lead to reproductive isolation
- 9. Describe the sources of genetic variation in natural populations
- 10. Explain the nature and extent of genetic variation within populations
- 11. Describe the mechanisms that preserve balanced polymorphisms
- 12. Describe the salient features of microevolution
- 13. Compare and contrast microevolution and macroevolution
- 14. Explain the salient features of macroevolution
- 15. Give an account of the different patterns of macroevolution
- 16. Elaborate on the role of adaptive radiation and extinction in macroevolution
- 17. What do you understand by the term natural selection? Describe the different types of natural selection with suitable examples
- 18. What is megaevolution? Explain the mechanism of megaevolution using a suitable example

- 1. Explain the term 'gene pool'. How does evolution operate via the gene pools of populations?
- 2. Differentiate between:
 - a. Allopatric and Sympatric speciation
 - **b.** Biological and evolutionary species
 - **c.** Microevolution and macroevolution
 - d. Stabilizing selection and disruptive selection
- 3. Explain stabilizing selection with the help of a suitable example
- 4. How does the example of sickle cell allele illustrate heterozygote advantage?
- 5. How does frequency-dependent selection affect genetic variation within a population over time?
- 6. Write short notes on:
 - **a.** Role of mutations in evolution
 - **b.** Role of migration in evolution
 - c. Non-random mating
 - d. Role of natural selection in evolution
 - e. Genetic drift

- f. Bottleneck effect
- g. Founder effect
- h. Directional evolution in peppered moth
- i. Evolution of Antibiotic resistance in bacteria
- j. Geographic variation
- k. Genetic polymorphism
- **I.** Parapatric speciation
- **m.** Adaptive radiation
- 7. What is the biological species concept? What are its limitations? How does it differ from the evolutionary species concept?
- 8. Explain the concept of coevolution using suitable examples

Unit 3 (10 Marks)

- 1. Describe briefly, the steps towards preparing a research design
- 2. Describe literature survey, collection of data and its analysis
- 3. What is a patent and how is it obtained?
- 4. Write an account on application of statistics in research

- 1. Define research. State the difference between research method and research methodology
- 2. Write a note on computer application in research
- 3. Describe briefly identification of research problem and formulation of research hypothesis
- 4. Write a note on abstract writing?
- 5. Write a note on plagiarism?
- 6. Write a note on bibliography?
- 7. Write a short note on ethics in scientific research

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception

USZO402 (COURSE - IX)

Unit 1 (10 Marks)

- 1. Explain prokaryotic cell.
- 2. Explain Eukaryotic cell.
- 3. Give an account of cell theory.
- 4. Describe the ultrastructure of nuclear membrane.
- 5. State the chemical composition and functions of nucleolus.
- 6. Describe nucleocytoplasmic interactions.
- 7. Describe fluid mosaic model of plasma membrane.
- 8. Give an account of active and passive transport
- 9. Describe various modifications of plasma membrane
- 11. Explain endocytosis and exocytosis
- 12. Give an account on cell permeability
- 13. Differentiate prokaryotic and eukaryotic cell

Unit 1 (5 Marks)

Write a short note on:

- 1. Virus
- 2. Nuclear matrix
- 3. Number and position of nucleus.
- 4. Nucleolus
- 5. Membrane receptors

- 1. Write a note on structural organization & importance of endomembrane system.
- 2. Describe ultrastructure of Endoplasmic Reticulum
- 3. Describe the types and functions of ER.
- 4. Give an account of ultrastructure and functions of Golgi complex.
- 5. Write an essay on functions of Golgi complex.

- 6. Give an account of polymorphism in lysosomes.
- 7. Write an essay on peroxisomes.
- 8. Describe the structure and chemical composition of mitochondria.
- 9. Write a note on mitochondria as powerhouse of the cell.
- 10. Describe the major functions of mitochondria.

Unit 2 (5 Marks)

- 1. Importance of endomembrane system
- 2. Write a short note on biogenesis of endomembrane system
- 3. Functions of Rough Endoplasmic Reticulum
- 4. Functions of Smooth Endoplasmic Reticulum
- 5. Structure of Golgi complex
- 6. Chemical composition of Golgi complex
- 7. Lipid & polysaccharide metabolism in Golgi complex
- 8. Secretion and protein sorting by Golgi complex
- 9. Write a brief note on GAAP
- 10. Write a brief note on protein glycosylation by Golgi complex
- 11. Origin and functions of lysosomes
- 12. Write a short note on peroxisomes
- 13. Structure of mitochondria
- 14. Chemical composition of mitochondria
- 15. Write a short note on ATP
- 16. Write a short note on glycolysis
- 17. Write a short note on Kreb's cycle
- 18. Write a short note on oxidative phosphorylation

- 1. Explain the concept of micromolecules and macromolecules.
- 2. Define carbohydrate. Add a note on its classification.
- 3. What are carbohydrates? Classify carbohydrate with suitable examples.
- 4. Explain with suitable example monosaccharide and disaccharide.
- 5. Discuss the properties of carbohydrates.
- 6. Explain oligosaccharides with suitable examples.

7. What are polysaccharides? How are they classified? Write the structures of glycogen and heparin/ chitin and heparin.

- 8. Discuss about chemical structure of the monosaccharides / disaccharides.
- 9. What are amino acids? Classify amino acids based on functional group.
- 10. Give an account of primary and secondary structure of proteins.
- 11. Write an account on tertiary and quaternary structure of proteins.
- 12. Describe the structure of saturated and unsaturated fatty acids.
- 13. What are fatty acids? Add a note on types of fatty acids.
- 14. Describe the structure and functions of water soluble vitamins.
- 15. Describe the structure and functions of lipid soluble vitamins.

- 1. Write a short note on monomers and polymers.
- 2. Write note on properties of carbohydrates.
- 3. Give an account of polysaccharides.
- 4. With suitable example explain glycosidic bond.
- 5. Explain the linkage in lactose and sucrose.
- 6. Give the biological importance of carbohydrates.
- 7. What are essential and nonessential amino acids?
- 8. Give an account of properties of amino acids.
- 9. Define and explain peptide bond with suitable example.
- 10. Explain the different types of proteins with suitable examples.
- 11. Explain the biological role of proteins.
- 12. Peptide bond
- 13. Types of fatty acids.
- 14. Biological role of lipids
- 15. Sterols
- 17. Describe properties of lipids.
- 18. Discuss the clinical significance of protein / carbohydrate.
- 19. Write short note on clinical significance of lipids.
- 20. Write a note on isomerism in carbohydrates/amino acids.
- 21. Describe the structure and functions of vitamin A/ vitamin B/ vitamin C/ vitamin D.

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception

USZOE1403 (COURSE - XA) – Elective 1

Unit-1 (10 Marks)

- 1) Classify the different types of eggs.
- 2) Briefly explain types and structure of sperms (any two animals).
- 3) Define cleavage Explain types of cleavages.
- 4) Give brief account on various types of blastulae.
- 5) What is gastrulation? Explain gastrulation in frog.
- 6) Give an account of process of coelom formation and its types

Unit-1 (5 Marks)

- Draw neat labeled diagram and explain any one of the following: (Microlecithal, Alecithal, Homolecithal, Heterolecithal, Isolecithal, Telolecithal, Centrolecithal, Discoidal).
- 2) Explain structure of sperm of frog/ reptile/ bird/ mammal.
- 3) Short note on holoblastic cleavage/ meroblastic cleavage.
- 4) Short note on equal or unequal cleavage.
- 5) Short note on discoblastula /coeloblastula.
- 6) Short note on centroblastula /amphiblastula /stereoblaastula,
- 7) Explain the process of coelom formation
- 8) Explain the process of gastrulation.

- 1. Describe male reproductive system and its hormonal regulation.
- 2. Describe female reproductive system and its hormonal regulation.
- 3. Define reproduction. Explain the hormonal regulation of reproduction.
- 4. What is contraception? Explain different methods of contraception.
- 5. Explain the various measures of birth control.
- 6. Define infertility and explain the causes of female infertility.
- 7. What are the causes of male infertility?
- 8. Explain the hormonal treatment for infertility using drugs.

- 9. Describe the methods of treatment of infertility.
- 10. Give a brief account of infertility related disorders.
- 11. What are sperm banks? Add a note on cryopreservation of sperms.
- 12. What is testicular biopsy? Explain Testicular sperm extraction (TESE), Pronuclear stage transfer (PROST).
- What are the steps involved in Embryo transfer (ET) and / Intra-fallopian transfer (IFT)/IVF? Add a note on its ethics.

Unit 2 (5 Marks)

- 1. Write a note on impact of age on reproductive stage
 - a. Menopause
 - b. Andropause
- 2. Write a note on amenorrhea.
- 3. How does sterilization act as a method of contraception?
- 4. Write a note on birth control.
- 5. What is the difference between natural and artificial methods of contraception?
- 6. How is T.B. a cause of female infertility?
- 7. What are the genetic causes of infertility?
- 8. Write a note on STD's as infertility related disorders?
- 9. What are the roles of endocrine disruptions in infertility?
- 10. Explain the role of the following in infertility:
 - a. Gonorrhoea
 - b. Syphilis
 - c. Genital Herpes
 - d. Chlamydia
- 11. Write a note on treatment of infertility by removal of causative environmental factors.

- 1. What are the causes, effects and control measures for air pollution?
- 2. What are the causes, effects and control measures for water pollution?
- 3. What are the causes, effects and control measures for soil pollution?
- 4. What are the causes, effects and control measures for sound pollution?
- 5. Define air pollution and give an account of hazardous air pollutants.

- 6. What is ocean littering? Explain in detail the causes and control measures for ocean littering?
- 7. Describe the alteration of metabolism of micro-organisms due to soil pollution.
- 8. Explain sound pollution along with its measurement and permissible limits.
- 9. Give a brief account of methods to control gaseous / particulate matters.
- 10. What is pollution? Add notes on:
 - a. Effect of air pollution on vegetation.
 - b. Effect of sound pollution on animals.

- 1. Explain the effects of air pollution on human beings.
- 2. What are different types of pollutants that cause air pollution?
- 3. Write short notes on:
 - a. Ozone depletion
 - b. Green house gases
 - c. Global warming
 - d. Acid rain
 - e. Sonic boom
 - f. Acoustic zoning
- 4. Explain the effect of thermal pollution on biodiversity.
- 5. Write a note on ionizing radiation
- 6. How is oil spill becomes a cause of water pollution / ocean littering?
- 7. How do pesticides and fertilizers contaminate water?
- 8. How can oil be retracted back from sea / ocean?
- 9. What are the effects of soil pollution on food chain?
- 10. What are the auditory / non auditory effects of sound pollution?

Question bank is suggestive. The paper setters are free to modify the questions or include new questions to the best of their perception

USZOE2403 (COURSE - XB) - Elective 2

Unit 1 (10 Marks)

- 1. Give in brief different indigenous breed of cattle with a suitable example.
- 2. Give in brief different exotic breeds of cattle with a suitable example.
- 3. Give in brief different breed of buffalo with a suitable example.
- 4. Give in brief different housing types in dairy farm.
- 5. Explain different types of diseases in cattle and add a note on its control.

Unit 1(05 Marks)

Write short note on

- 1. Malvi
- 2. Hariyana
- 3. Deoni
- 4. Red sindhi
- 5. Khillari
- 6. Jersy
- 7. Holstein
- 8. Nagpuri
- 9. Bhadawari
- 10. Murrah
- 11. Jafrabadi
- 12. Weaning of calf
- 13. Castration
- 14. Dehorning
- 15. Cleaning and sanitation.

- 1. Give in brief life history of silkworm.
- 2. Give in brief reeling and extraction of silk.
- 3. Give in brief diseases and control measures in sericulture.

4. Give in brief harvesting and processing of cocoon.

Unit 2 (5 Marks)

- 1. Varieties of silkworm
- 2. Rearing of silkworm
- 3. Silk extraction
- 4. Host plants for sericulture

Unit 3 (10 Marks)

- 1. Give an account on pisciculture, add a note on finfish culture
- 2. Explain monoculture with respect to aquaculture
- 3. Explain polyculture with respect to polyculture
- 4. Give an account on fresh water prawn culture
- 5. Give an account on pearl culture.

Unit 3 (5 Marks)

Write short notes on:-

- 1. Composition of pearl
- 2. White shrimp culture
- 3. Cage culture
- 4. Fish diseases
- 5. Symptoms of diseases
- 6. Control of diseases

-----The End-----