University of Mumbai

No. UG/ 36 of 2019-20

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/95 of 2015-16, dated 5th October, 2015 relating to the revised syllabus as per (CBSGS) for the T.Y.B..Sc. Botany (Sem. V & VI).

They are hereby informed that the recommendations made by the Board of Studies in Botany at its meeting held on 18th March, 2019 have been accepted by the Academic Council at its meeting held on 10th May, 2019 <u>vide</u> item No. 4.26 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T. Y .B.Sc. Botany in (Sem. V & VI) has been brought into force with effect from the academic year 2019-20, accordingly. (The same is available on the University's website www.mu.ac.in).

MUMBAI – 400 032 03⁹July, 2019 To

The Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.26/10/05/2019

No. UG/ 36 -A of 2019

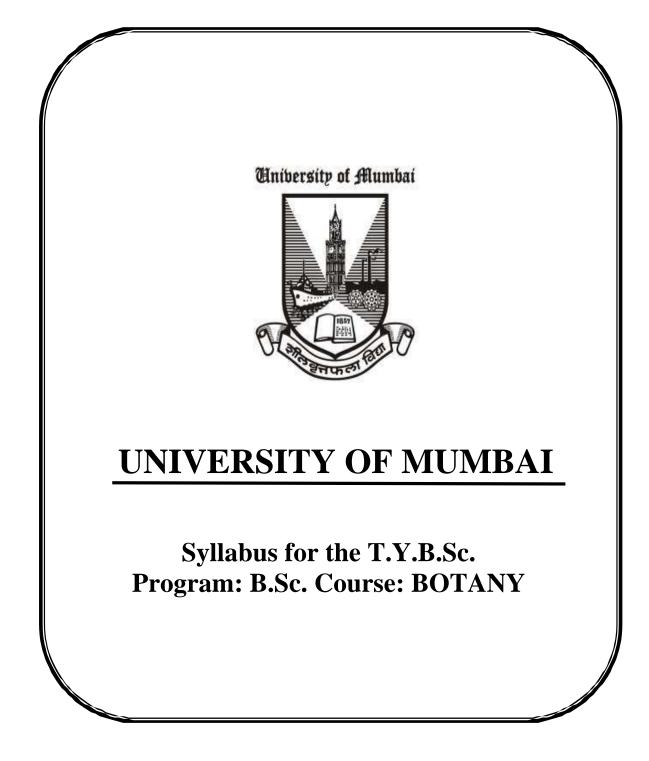
MUMBAI-400 032

3 July, 2019

mz

(Dr. Ajay Deshmukh)

REGISTRAR


Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Botany,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Professor-cum-Director, Institute of Distance and Open Learning (IDOL),
- 5) The Director, Board of Students Development,
- 6) The Co-ordinator, University Computerization Centre,s

SimaPilla

Dr. Seema Pillai I/C PRINCIPAL SMT. DEVKIBA MOHANSINHJI CHAUHAN COLLEGE OF COMMERCE & SCIENCE, SILVASSA

(Credit Based Semester and Grading System with effect from the academic year 2019–2020)

T.Y.B.Sc. Botany Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2019-2020

SEMESTER V

Course Code	UNIT	TOPICS	Credit	L / Weeks
USBO501	PLANT	DIVERSITY III		
	Ι	Microbiology	2.5	1
	II	Algae		1
	III	Fungi		1
	IV	Plant Pathology		1
USBO502	PLANT	DIVERSITY IV		
	Ι	Paleobotany	2.5	1
	II	Angiosperms I		1
	III	Anatomy I		1
	IV	Palynology		1
USBO503	FORM	AND FUNCTION III		
	Ι	Cytology and Molecular Biology	2.5	1
	II	Plant Physiology I		1
	III	Environmental Botany		1
	IV	Plant Tissue Culture		1
USBO504		ENT TRENDS IN PLANT		
	SCIEN			
	I	Ethnobotany and Mushroom Industry	2.5	1
	II	Plant Biotechnology I		1
	III	Instrumentation		1
	IV	Pharmacognosy and medicinal botany		1
USBOP5		als based on Two Courses in (501 & 502) – For 6 Units	3	8
USBOP6	Practica	als based on Two Courses in (503 &504) – For 6 Units	3	8
USBOP7	Practica	als based on Two Courses in (502 & 503) – For 3 Units	3	8
			16	32 + 8 (3 Units)

SEMESTER VI

Course Code	UNIT	TOPICS	Credit	L / Weeks
USBO601	PLANT	DIVERSITY III		
	Ι	Bryophyta	2.5	1
	II	Pteridophyta		1
		Bryophyta and		
	III	Pteridophyta: Applied		1
		Aspects		
	IV	Gymnosperms		1
USBO602	PLANT	DIVERSITY IV		
	Ι	Angiosperms II	2.5	1
	II	Anatomy II		1
	III	Embryology		1
	IV	Plant Geography		1
USBO603	FORM	AND FUNCTION III		
	Ι	Plant Biochemistry	2.5	1
	II	Plant Physiology II		1
	III	Genetics		1
	IV	Biostatistics		1
USBO604	CURRE SCIENO	CNT TRENDS IN PLANT CES II		
	Ι	Plant Biotechnology II	2.5	1
	II	Bioinformatics		1
	III	Economic Botany		1
	IV	Post Harvest Technology		1
USBOP8		als based on Two Courses in 601 & 602) – For 6 Units	3	8
USBOP9		als based on Two Courses in 603 & 604) – For 6 Units	3	8
USBOP10		als based on Two Courses in 602 & 603) – For 3 Units	3	8
			16	32 + 8 (3 Units)

BSc BOTANY: PROGRAM OUTCOMES

Specific core discipline knowledge

- Students can recall details and information about the evolution, anatomy, morphology, systematics, genetics, physiology, ecology, and conservation of plants and all other forms of life.
- Students can recall details of the unique ecological and evolutionary features of the local and Indian flora.

Communication skills

• Students can communicate effectively using oral and written communication skills

Problem solving and research skills

• Students can generate and test hypotheses, make observations, collect data, analyze and interpret results, derive conclusions, and evaluate their significance within a broad scientific context

BSc BOTANY: PROGRAM SPECIFIC OUTCOMES

- To recognize and identify major groups of non-vascular and vascular plants and their phylogenetic relationships.
- To understand the phylogeny of plants and study various systems of classification.
- To explore the morphological, anatomical, embryological details as well as economic importance of algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms.
- To understand physiological processes and adaptations of plants.
- To provide knowledge about environmental factors and natural resources and their importance in sustainable development.
- To be able to carry out phytochemical analysis of plant extracts and application of the isolated compounds for treatment of diseases.
- To be able to deal with all microbes and the technologies for their effective uses in industry and mitigation of environmental concerns.
- To explain how current medicinal practices are often based on indigenous plant knowledge and to get introduced to different perspectives on treating ailments according to ethnomedicinal principles.
- To understand patterns of heredity and variation among individuals, species and populations and apply principles for improvement of quality and yield.
- To be able to apply statistical tools to gain insights into significantly different data from different sources.
- To acquire recently published knowledge in molecular biology, such as rDNA technology; PTC and bioinformatics and their applications.

SEMESTER V THEORY

Course Code	Title	Credits
USBO501	PLANT DIVERSITY – III	2.5 Credits (60 Lectures)
Course outcomes:		
 and visualization. To understand the s cycle patterns with To learn the general fungi along with life To understand the s 	be able : about microbial diversity and techniques for c alient features of three major groups of algae, a suitable example; to be able to identify them I characteristics and classification of two majo e cycles of each group; to be able to identify th cope and importance of Plant Pathology and a neasures of commonly widespread plant disea	their life r groups of nem. pply the concepts
	Viruses, Bacteria, Algae, Fungi, na and Actinomycetes.	(15 lectures)
• Culturing: Sterilizat	ion, media, staining, colony characters.	
 Division Rhodophyta Distribution, Cell struthallus, reproduction: Generations, Econom Structure, life cycle a Batrachospermum. Classification and Distribution, Cell st thallus, Reproduction Generations, Econom Structure, life cycle a Classification and Distribution, Cell st thallus, Reproduction Generations, Econom Structure, life cycle a Classification and Distribution, Cell st thallus, Reproduction 	nd systematic position of <i>Polysiphonia</i> , General Characters of Xanthophyta: ructure, pigments, reserve food, range of on: asexual and sexual, Alternation of tic Importance. nd systematic position of <i>Vaucheria</i> . General Characters of Bacillariophyta: ructure, pigments, reserve food, range of on: asexual and sexual, Alternation of	(15 lectures)
 Basidiomycetes: Class Life cycle of Agart Life cycle of Pucch 	<i>inia</i> ssification and General Characters	(15 lectures)

Unit IV: Plant Pathology	
• Study of plant diseases: Causative organism, symptoms,	
predisposing factors, disease cycle and control measures of the	
following.	
White Rust – Albugo candida	
Tikka disease of ground nut: Cercospora	(15 lectures)
Damping off disease: Pythium	
Citrus canker – Xanthomonas axonopodis pv. citri	
Leaf curl – leaf curl virus in Papaya.	
• Study of Physical, chemical and biological control methods of	
plant diseases.	

Course Code	Title	Credits
USBO502	PLANT DIVERSITY – IV	2.5 Credits (60 lectures)
 in evolution. To provide plant desreproductive structu according to Bentha To gain proficiency identifying any unkn To relate anomalies the salient features of th	be able : ge of different fossil forms and understand the scription, describe the morphological and res of seven families and also identify and cla m and Hooker's system. in the use of keys and identification manuals nown plants to species level. in internal stem structure with function and ap of the root stem transition zone. pollen study and learn to apply it in various fie	ssify for ppreciate
 female fructification Lyginopteris- All form fructification. Pentoxylon- All form 	m genera root, stem, leaf, male and female genera. irbal Sahni, Birbal Sahni Institute of	(15 lectures)
 Unit II: Angiosperms I Morphology of flower Complete classification prescribed families), I Bentham and Hookee plants up to family families and economic 	r – All Parts of Flower. on of Bentham and Hooker (only for	(15 lectures)
Salvadora, AchyrantheRoot stem transition	y growth in the Stems of <i>Bignonia</i> , es, <i>Dracaena</i> . Storage roots of Beet, Radish nomocytic, Anisocytic, Diacytic, Paracytic,	(15 lectures)

Unit IV: Palynology	
Pollen Morphology	
Pollen viability-storage	(15 lostures)
Germination and growth of pollen	(15 lectures)
• Application of Palynology in honey industry, coal and oil	
exploration, Aerobiology and pollen allergies, forensic science	2

Course Code	Title	Credits
USBO503	FORM AND FUNCTIONS- II	2.5 Credits (60 Lectures)
 mechanisms of tran To understand water transport, and apply in challenging abio To understand succe technologies in ord To get exposure to 	dge about two important organelles and molec solation er relations of plants, inorganic and organic sol y the knowledge to manage mineral nutrition a	ute nd survival ation polluted sites. re and apply
	n of nucleus n of vacuole n of giant chromosomes aracteristics of the genetic code	(15 lectures)
 Solute transport: Traand passive transport; Translocation of solue experiment. Pressure flow model unloading, anatomy sieve tube translocation Mineral Nutrition: 	ential, osmosis, transpiration, imbibition, ansport of ions across cell membranes, active carriers, channels and pumps. Ites: Composition of phloem sap, girdling I (Munch's hypothesis):Phloem loading and of sieve tube elements and mechanisms of	(15 lectures)
 Unit III: Environmental Bioremediation: Primpopulation in bioreme Phytoremediation: M Plant succession: Hy Space, Succession on the Climax, Succession theories. 	Botany aciples, factors responsible and microbial ediation. Metals, Organic pollutants rdrosere and Xerosere – Formation of Barren the Land Citing Different Seres leading up to on in Water, Ecesis, Poly and Mono-climax	(15 lectures)
 Detailed study of Orch Plant cell suspension metabolites: With spo Somatic Embryogenes Protoplast Fusion Definition, and van 	opagation with reference to Floriculture:	(15 lectures)

Course Code	Title	Credits
USBO504	CURRENT TRENDS IN PLANT SCIENCES – II	2.5 Credits (60 Lectures)
 To get exp of entre To learn e knowle agricult To gain kn and cha To learn p To gain pr 	nts would be able : posure to the technique of mushroom cultivation and explo- preneurship in the same. thnobotanical principles, applications and utilize indigenous edge for the cure of common human diseases and	us plant improvement of sisolation instrumentation.
 Ethnobotal study. Application Ethno-me Agricultu Edible pl Traditional Skin ailm Liver ailh Wound h Fever: Va Diabetes Mushroom Detail getto method mushroot General a 	ants. I medicines used by tribals in Maharashtra towards nents: <i>Rubia cordfolia, Sandalwood</i> ments: <i>Phyllanthus, Andrographis</i> nealing and ageing: <i>Centella, Typha, Terminalia, Tridax.</i> <i>itex negundo, Tinospora cordifolia</i> leaves <i>Momordica charantia, Syzygium cuminii</i> industry: eneral account of production of mushrooms with respect ods of Composting, spawning, casing, harvesting of m. Cultivation of <i>Pleurotus, Agaricus, Volvariella</i>	(15 lectures)
 Unit II: Plant B Construction c- DNA libr Identification Genomic libe Analysis of analysis of Hybridization 	Solution iotechnology I n of genomic DNA libraries, Chromosome libraries and aries. on of specific cloned sequences in c-DNA libraries and praries genes and gene transcripts –Restriction enzyme, cloned DNA sequences. Hybridization(Southern on)	(15 lectures)
InstrumentaChromatog Principle and	y and Spectrophotometry (Visible, UV and IR) – tion, working, principle and applications. graphy: General account of Column chromatography. In bedding material involved in adsorption and partition aphy, ion exchange chromatography, molecular sieve	(15 lectures)

calamus and Curcuma longa

SEMESTER V PRACTICAL

Minimum marks for passing: 20

Semester V USBOP5 – For 6 Units	Cr
PRACTICAL PAPER I-PLANT DIVERSITY III - USBOP 501 (For 6	1.5
Units)	
Microbiology	
• Study of aeromicrobiota by petriplate exposed method: Fungal culture,	
Bacterial culture.	
• Determination of Minimum Inhibitory Concentration (MIC) of sucrose	
against selected microorganism.	
• Study of antimicrobial activity by the disc diffusion method.	
Algae (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycle of the following Algae from fresh /	
preserved material and permanent slides.	
Polysiphonia	
➢ Batrachospermum	
Vaucheria	
Pinnularia	
Fungi (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycle of the following Fungi from fresh /	
preserved material and permanent slides	
Agaricus	
Puccinia	
Alternaria	
Plant Pathology	
• Study of the following fungal diseases:	
White rust in Cruciferae (Brassicaceae)	
Tikka disease in Groundnut	
Damping off disease	
Citrus canker	
Leaf curl in Papaya Leaf	
Semester V USBOP7 – For 3 Units	
PRACTICAL PAPER II-PLANT DIVERSITY IV USBOP 502 (For 3	Cr
& 6 Units)	
Paleobotany	1.5
• Study of the following form genera with the help of permanent slides/	
photomicrographs.	
Lepidodendron	
Lyginopteris	
> Pentoxylon	
Angiosperms I	
• Morphology of Flower – All Parts of Flower	
• Study of one plant from each of the following Angiosperm families as per	
Bentham and Hooker's system of classification.	
Capparidaceae	
 Umbelliferae Cucurbitaceae 	

> Rubiaceae	
Solanaceae	
Commelinaceae	
Graminae	
• Morphological peculiarities and economic importance of the members of	
the above-mentioned Angiosperm families	
• Identifying the genus and species of a plant with the help of Flora	
Anatomy I	
• Study of anomalous secondary growth in the stems of the following plants	
using double staining technique.	
1) Bignonia	
2) Salvadora	
3) Achyranthes	
4) Dracaena	
• Study of anomalous secondary growth in the roots of	
1) Beet	
2) Radish	
Types of Stomata	
1) Anomocytic	
2) Anisocytic	
3) Diacytic	
4) Paracytic	
5) Graminaceous	
Palynology I	
• Study of pollen morphology (NPC Analysis) of the following by	
Chitale's Method	
> Hibiscus	
Datura	
> Ocimum	
Crinum	
Pancratium	
Canna	
Determination of pollen viability	
• Pollen analysis from honey sample – unifloral and multifloral honey	
• Effect of varying concentration of sucrose on <i>In vitro</i> Pollen germination	
Total Credit	3

Semester V USBOP6 – For 6Units Semester V USBOP7 – For 3Units	Cr
PRACTICAL –PAPER III FORM AND FUNCTION II USBOP 503 (For	1.5
3 & 6 Units)	
Cytology and Molecular Biology	
Mounting of Giant chromosomes from <i>Chironomous</i> larva	
• Smear preparation from <i>Tradescantia</i> buds	
• Predicting the sequence of amino acids in the polypeptide chain that will	
be formed following translation(Eukaryotic)	
Plant Physiology I	
• Estimation of Phosphate phosphorus (Plant acid extract)	
• Estimation of Iron (Plant acid extract)	
Note: Preparation of a standard graph and determination of the multiplication	
factor for Phosphate / Iron estimation using a given standard phosphate /	
Standard Iron solution should be done in regular practical as this will also be	
put as a question in practical exam	
Environmental Botany	
• Estimation of the following in given water sample	
Dissolved oxygen demand	
Biological oxygen demand	
> Hardness	
Salinity and Chlorinity	
Micropropogation	
Plant Tissue culture:	
• Identification – Multiple shoot culture, hairy root culture, somatic embryogenesis	
• Preparation of stock solutions for preparation of MS medium	
(Note: Concept of preparation of specified molar solutions should be taught	
and problems based on preparation of stock solutions for tissue culture media	
will be given).	
Semester V USBOP6 – For 6 Units	
PRACTICAL – PAPER IV CURRENT TRENDS IN PLANT SCIENCES II USBOP 504 (For 6 Units)	Cr
Ethnobotany and mushroom industry	1.5
• Study of plants mentioned in theory for Ethnobotany	
• Mushroom cultivation (To be demonstrated)	
• Identification of various stages involved in mushroom cultivation – spawn,	
pin head stage, mature/ harvest stage of Agaricus, Pleurotus, Volvariella	
Biotechnology I	
• Growth curve of E. coli	
Plasmid DNA isolation and Separation of DNA using AGE	
Restriction mapping (problems), Southern blotting	
Instrumentation	
• Demonstration of Beer Lambert's Law	
• Experiment based on ion exchange chromatography for demonstration	
• Experiment based on separation of dyes/ plant pigments using silica gel column.	

Pharmacognosy

• Macroscopic/ Microscopic characters and Chemical tests for active constituents of the following plants.	l
 Allium sativum 	1
Acorus calamus	l
Curcuma longa	l
Senna angustifolia	l
Strychnos nux-vomica	1
Eugenia caryophyllata	l
Total Credit	3

	Title	Credits 2.5 Credits	
USBO601	USBO601 PLANT DIVERSITY – III		
Course outcomes:			
The students w			
•	escribe and study in detail the life cycles of three		
-	n detail classification and general characters of the		
	es and identify as well as describe the life cycles	of one	
example from			
-	tionary aspects and economic utilization of Bryop	phytes	
and Pteridophy			
• To identify, de	escribe and study in detail the life cycles of three	Gymnosperms.	
	G. M. Smith Classification system to be		
followed)			
• Life cycle of <i>Ma</i>		(15 lectures)	
• Life cycle of <i>Pel</i>	lia		
• Life cycle of <i>Spl</i>	hagnum		
	ta (G. M. Smith Classification System to be		
followed)			
	assification, general characters; Life cycle of		
Lycopodium		(15 lectures)	
	lassification, general characters; Life cycle of	(
-			
	sification, general characters; Life cycle of		
Adiantum and Ma			
• • •	s and Pteridophytes: Applied aspects		
• Ecology of Bryon	•		
-	ance of Bryophytes.		
• Bryophytes as In		(15 lectures)	
-	rophyte and Gametophyte in Bryophytes.	(15 icclures)	
-	ance of Pteridophytes		
• Diversity and dis	tribution of Indian Pteridophytes		
	l Evolution of Sori in Pteridophytes.		
	rms (Chamberlain's Classification System to b	e	
followed)			
• Life cycle of <i>Thu</i>	-	(15 lectures)	
	etum		
• Life cycle of <i>Gne</i>	-		
• Life cycle of <i>Eph</i>	edra. cance of Gymnosperms		

Course Code	Title	Credits	
USBO602	USBO602 PLANT DIVERSITY – IV		
 provide plant description of seven families. To gain exposure t To gain insight into To understand development of the more than the them for conservat 	d be able : ion of Botanical gardens, BSI to Angiosperm s ription, describe the morphological and reprodu o a phylognetic system of classification. to the anatomical adaptations of different ecolog elopment plant of male and female gametophyt re and development. different aspects and importance of Biodiversit ion of species so as to prevent further loss or ea l preserve the existing for future generations.	ictive structures gical plant groups. res, y and utilize	
 Unit I: Angiosperms II Major Botanic gat Howrah; National Botanic Garden, Darj Botanical survey of In Bentham and Hooke plants up to family families and economi morphology for memb Rhamnaceae Combretaceae Asclepiadaceae Labiatae Euphorbiaceae Cannaceae Hutchinson's classi 	rdens of India– Indian Botanic Garden, Botanic Garden (NBRI) Lucknow; Lloyd eeling; Lalbaugh Botanic Garden, Bangaluru. ndia and regional branches of India er's system of classification for flowering with respect to the following prescribed ic importance, medicinal importance and fruit bers of the families	(15 lectures)	
 Hygrophytes -<i>Typ</i> Mesophytes Sciophytes Halophytes Epiphytes Xerophytes 	bmerged, floating, rooted bha	(15 lectures)	
 Unit III: Embryology Microsporogenesis Megasporogenesis- I of all embryo sacs Types of ovules Double fertilization Development of embr 	Development of monosporic type, examples ryo– <i>Capsella</i>	(15 lectures)	

 Unit IV: Plant Geography (Shifted from Paper – IV) Phytogeographical regions of India. Biodiversity: 			
 Definition, diversity of flora found in various forest types of India Levels of biodiversity Importance and status of biodiversity Loss of biodiversity Conservation of biodiversity Genetic diversity- Molecular characteristics 	(15 lectures)		

Course Code	Credits	
USBO603 FORMS AND FUNCTION – III		2.5 Credits 60 Lectures)
 role, functions an To gain insight in applications of th To understand problems based of their implications To generate and their interpret results a broad scientific Unit I: Plant Biochemine	plant biomolecular structures and appreciate the d applications of enzymes. no the Nitrogen and plant hormone metabolism e same in agriculture and horticulture. inciples of genetic mapping, mutations and solven them, gain knowledge of various metabolic d s. est hypotheses, make observations, collect data lts, derive conclusions, and evaluate their signific context, using suitable statistical techniques.	e structures, with ve isorders and , analyze
 acids) Enzymes: Nomence kinetics, Michaeliss 	pids (fatty acids and glycerol), proteins (amino clature, classification, mode of action, Enzyme -Menten equation, competitive, non- -competitive inhibitors.	(15 lectures)
 and leghaemoglobir (NR, NiR activity) transamination reac utilization. Physiological effect 	by II ism: Nitrogen cycle, root nodule formation, a, nitrogenase activity, assimilation of nitrates, b, assimilation of ammonia, (amination and tions), nitrogen assimilation and carbohydrate ts and commercial applications of Auxins, nins and Abscisic acid	(15 lectures
 Unit III: Genetics Genetic mapping gene recombination crosses and mappin Gene mutations: mutations, induced Metabolic disord 	in eukaryotes: discovery of genetic linkage, n, construction of genetic maps, three- point ag chromosomes, problems based on the same definition, types of mutations, causes of mutations, the Ame's test ers- enzymatic and non-enzymatic: Gene structure Garrod's hypothesis of inborn errors	(15 lectures
	Shifted from Paper – II) student's <i>t</i> -test – Paired and Unpaired.	(15 lectures

Course Code	Title	Credits
USBO604	2.5 Credits (60 Lectures)	
Course outcom		
	ents would be able :	
-	nsight into recent molecular biology techniques for DNA	•
-	fication and Barcoding techniques and applications there	
	stand and apply tools of Bioinformatics for data retrieval	
	genetic analysis.	
	about the sources of economically important plants in the	
	ils and apply it for extraction, dealing with entrepreneur	
	nowledge and proficiency in preservation of post harves	t produce
and explo	re the possibility of entrepreneurship in the field.	
Unit I: Plant B		
-	nce analysis– Maxam – Gilbert Method and Sanger's	
•	o Sequencing.	
•	Chain Reaction (PCR).	(15 lectures)
	ding: Basic features, nuclear genome sequence,	
1 4	genome sequence, <i>rbc</i> L gene sequence, <i>mat</i> K gene	
	resent status of barcoding in plants.	
	formatics (Shifted from Paper – III)	
-	on of biological data, databases	
-	of data bases, retrieval of desired data, BLAST.	(15 lectures)
	cture analysis and application	
*	quence analysis and phylogenetic analysis	
Unit III: Econo	•	
	oils: Extraction, perfumes, perfume oils, oil of Rose,	
	, Patchouli, Champaca, grass oils: Citronella, Vetiver.	
•	Drying oil (Linseed and Soyabean oil), semidrying oils	(15 lectures)
(Cotton see	d, Sesame oil) and non-drying oils (Olive oil and	(15 lectures)
Peanut oil),		
• Vegetable F	Tats: Coconut and Palm oil	
Unit IV : Post l	Harvest Technology	
• Storage of I	Plant Produce – Preservation of Fruits and Vegetables	
• •	(Dehydration) - Natural conditions - Sun drying,	
	l Drying – Hot Air Drying, Vacuum Drying,	
	ally Dried Fruits, Crystallized or Candied Fruits, Fruit	
	Freeze Drying)	
-	g (Cold Air Blast System, Liquid Immersion method,	(15 lootures)
	eezers, Cryogenic Freezing, Dehydro-Freezing, Freeze	(15 lectures)
Drying),		
Canning		
-	(in Brine, in Vinegar, Indian Pickles)	
Sugar Co	oncentrates (Jams, Jellies, Fruit juices)	
Food Pre	eservatives	
➤ Use of A	ntioxidants in Preservation	

SEMEST ER VI PRACTICAL

SEMESTER VI USBOP8 – FOR 6 UNITS	Cr
PRACTICAL PAPER I-PLANT DIVERSITY III – USBOP 601(For 6	1.5
Units)	
Bryophyta (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycle of the following Bryophyta from fresh /	
preserved material and permanent slides	
> Marchantia	
Pelia	
> Sphagnum	
Pteridophyta (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycles of the following Pteridophytes from	
fresh / preserved material and permanent slides	
> Lycopodium	
➢ Equisetum	
Adiantum	
➢ Marselia	
Bryophytes and Pteridophytes: Applied aspects	
Economic importance of Bryophyta	
Economic importance of Pteridophyta	
• Types of Sporophytes in Bryophyta (from Permanent slides)	
• Types of Sori and Soral Arrangement in Pteridophytes	
Gymnosperms (Chamberlain's Classification System to be followed)	
• Study of stages in the life cycles of the following Gymnosperms from	
fresh / preserved material and permanent slides	
> Thuja	
➢ Gnetum	
➢ Ephedra	
Economic importance of Gymnosperms	
USBOP10 – FOR 3 UNITS	
PRACTICAL PAPER II-PLANT DIVERSITY IV USBOP602 (For 3 &	1.5
6 Units)	
Angiosperms II	
• Study of one plant from each of the following Angiosperm families as	
per Bentham and Hooker's system of classification.	
> Rhamnaceae	
Combretaceae	
> Asclepiadaceae	
> Labiatae	
Euphorbiaceae	
> Cannaceae	
• Morphological peculiarities and economic importance of the members	
of the above-mentioned Angiosperm families	
• Identify the genus and species with the help of flora	

An	atomy II	
•	Study of Ecological Anatomy of	
	 Hydrophytes: Hydrilla stem, Nymphaea petiole, Eichhornia offset 	
	 Epiphytes: Orchid 	
	 Sciophytes: <i>Peperomia</i> leaf 	
	Xerophytes: Nerium leaf, Opuntia phylloclade	
	 Halophytes: Avicennia leaf and pneumatophore, Sesuvium / Sueda 	
	leaf	
	Mesophytes: Vinca leaf	
Em	ibryology	
•	Study of various stages of Microsporogenesis, Megasporogenesis and	
	Embryo Development with the help of permanent slides /	
	photomicrographs	
•	Mounting of Monocot (Maize) and Dicot (Castor and Gram)embryo	
٠	In vivo growth of pollen tube in Portulaca /Vinca	
Pla	nt Geography	
•	Study of phytogeographic regions of India	
•	Preparation of vegetation map using Garmin's GPS Instrument	
•	Problems based on Simpson's diversity Index	
	Total Credit	3
SE	MESTER VI USBOP9 – FOR 6 UNITS	Cr
SE	MESTER VI USBOP10 – FOR 3 UNITS	
	ACTICAL PAPER III–FORM AND FUNCTION III USBOP603 or 3 & 6 Units)	1.5
Pla	nt Biochemistry	
•	Estimation of proteins by Biuret method	
•	Effect of temperature on the activity of amylase	
•	Effect of pH on the activity of amylase	
•	Effect of substrate variation on the activity of amylase	
Pla	nt Physiology II	
•	Determination of alpha-amino nitrogen	
•	Effect of GA on seed germination	
•	Estimation of reducing sugars by DNSA method	
Ge	netics	
•	Problems based on three-point crosses, construction of chromosome	
	maps	
•	Identification of types of mutations from given DNA sequences	
•	Study of mitosis using pre-treated root tips of <i>Allium</i>	
Bio	statistics	
•	<i>t</i> -test (paired and unpaired)	
•	Problems based on regression analysis	
•	ANOVA (One Way)	
	ACTICAL PAPER IV CURRENT TRENDS IN PLANT SCIENCES BOP 604 (For 6 Units)	
_	nt Biotechnology II	
•	DNA sequencing by Sanger's Method and Pyro Sequencing Method	
•	DNA barcoding of plant material by using suitable data	
1		

Bioinformatics		
• BLAST: nBLAST, pBLAST		
Multiple sequence alignment		
Phylogenetic analysis		
RASMOL/SPDBV		
Economic Botany		
Demonstration: Extraction of essential oil using Clevenger		
• Thin layer chromatography of essential oil of <i>Patchouli</i> and <i>Citronella</i>		
Saponification value of Palm oil		
Post-Harvest Technology		
Preparation of		
➤ Squash		
➤ Jam		
➤ Jelly		
> Pickle		
Total Credit	3	

Scheme of Examinations:

Theory Course: Semester End Assessment	100	Marks Each Theory Paper
Practical Course	50	Marks Each Practical Paper

Students offering Double major (3 Units) will study Paper II and III

Semester End Theory Examination Question Paper Pattern:

Q.1 – Four (4) Long Answer Questions on Unit – I out of which Two	10 Marks Each
(2) to be solved.	
Q.2 – Four (4) Long Answer Questions on Unit – II out of which	10 Marks Each
Two (2) to be solved.	
Q.3 – Four (4) Long Answer Questions on Unit – III out of which	10 Marks Each
Two (2) to be solved.	
Q.4 – Four (4) Long Answer Questions on Unit – IV out of which	10 Marks Each
Two (2) to be solved.	
Q.5 – Six (6) Short Answer Questions on all four (4) Units out of	05 Marks Each
which Four (4) to be solved.	

Note:

- 1. Minimum Marks of 20 are required in Every Practical Paper Examination in each semester.
- 2. A minimum of four field excursions (with at least one beyond the limits of Mumbai / Local area) for habitat studies are compulsory. Field work of not less than eight hours duration is equivalent to one period per week for a batch of fifteen students.
- 3. A candidate will be allowed to appear for the practical examinations only if he/she submits a certified journal of T.Y.B.Sc. Botany and the Field Report or a certificate from the Head of the Department/Institute to the effect that the candidate has completed the practical course of T.Y.B.Sc. Botany as per the minimum requirements. In case of loss of journal, a candidate must produce a certificate from the Head of the Department/ Institute that the practical for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination but the marks allotted for the journal will not be granted.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP5) Plant Diversity III (USBOP501) Practical Paper – I

 Duration: 9:00 am to 01:00 pm
 Max. Marks:50

 Q.1 Perform the given Microbiological Experiment 'A'
 12

 Q.2 Identify, Classify and Describe Specimens B, C and D. Sketch neat and labeled diagrams of Morphological / Microscopical structures seen in the specimens.
 24

 Q.3 Identify and describe slides / specimens E, F and G.
 09

 Q.4 Journal
 05

KEY:

- A– Any one experiment out of four as prescribed in syllabus.
- B & C– Algae.
- **D** Fungi.
- E, F & G-Plant Pathology, Algae or Fungi not asked above in random order.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP5) Plant Diversity IV (USBOP502) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1A.Classify specimen 'A' up to their families giving reasons. Give floral formula. Sketch neat and		
	labeled L. S. of flower and T.S. ovary.	10
Q. 1B.Id	lentify genus and species of specimen 'B' using flora.	05
Q.2	Make a temporary double stained preparation of T.S. specimen 'C' and comment on	the type
	of secondary growth.	06
Q.3	Perform the Palynology experiment 'D' allotted to you.	07
Q.4	Identify and describe slide/ specimen 'E', 'F', 'G' & 'H'.	12
Q.5	Field report	05
Q.6	Viva voce (based on Paper I and Paper II).	05

KEY

- A-Families of T.Y.B.Sc only
- B-Plants from F.Y & S.Y. B. Sc Families to be included
- C-Anatomy Anomalous Secondary Growth
- **D** As per slip

E, **F**, **G** & **H**–Fossils, Types of Stomata, Morphology of flower & Morphology of Fruits Studied in Theory – in random order

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP6) FORMS AND FUNCTION III (USBOP503) Practical Paper – III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1 Make a smear preparation of material 'A' and show the slide to the Examiner. Co		it on
	your observation / Expose the giant chromosomes from the salivary glands of Chironomous	
	larva.	08
Q. 2	Perform the experiment 'B' allotted to you (Physiology).	12
Q. 3	Perform the experiment 'C' allotted to you (Ecology).	12
Q. 4.	Calculate the of the given solution 'D' to prepare the required solution.	07
Q. 5.	Identify and describe slide/specimen 'E' & 'F'.	06
Q.6.	Journal.	05

KEY

- **B** Physiology experiment.
- C-Ecology experiment.
- **D** Plant Tissue Culture.
- E & F-Multiple shoot culture, Hairy root culture, Somatic embryogenesis, Amino acid sequencing.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP6) CURRENT TRENDS IN PLANT SCIENCE II (USBOP504) Practical Paper – IV

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1. Perform the experiment A- growth curve of <i>E.coli</i> / Isolate plasmid DNA and separate		ing
	AGE.	12
Q.2.	Perform the experiment 'B' allotted to you.	10
Q.3. Describe macroscopical /microscopical character with the help of neat and lab		
	sketches of specimens 'C' and 'D'. Perform the chemical test / TLC to identify the active	
	constituents.	14
Q. 4	Identify and explain the specimens/ photographs 'E', 'F' and 'G'.	09
Q. 5.	Journal.	05

KEY

B– Experiment based on Beer- Lambert's Law Experiment on separation of dyes/pigments using silica gel column chromatography

C & D–Allium sativum, Acorus calamus, Curcuma longa, Senna angustifolia, Strychnos nux-vomica Eugenia caryophyllata

E, F & G– any stage of mushroom cultivation, any Plant from ethnobotany, problems on restriction mapping

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP7) Plant Diversity IV (USBOP502) (For 3 Units) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Classify specimen 'A' up to their families giving reasons. Give floral formula. Sketch i and labelled L.S. of flower and T.S. of ovary.	neat 10
Identify genus and species of specimen 'B' using flora.	05
Make a temporary double stained preparation of T.S. specimen 'C' and comment on the	e type
of secondary growth.	06
Perform the Palynology experiment 'D' allotted to you.	07
Identify and describe slide/ specimen 'E', 'F', 'G' & 'H'.	12
Field report	05
Journal.	05
	and labelled L.S. of flower and T.S. of ovary. Identify genus and species of specimen 'B' using flora. Make a temporary double stained preparation of T.S. specimen 'C' and comment on the of secondary growth. Perform the Palynology experiment 'D' allotted to you. Identify and describe slide/ specimen 'E' , 'F' , 'G' & 'H' . Field report

KEY

A-Families of T.Y.B.Sc only

- B-Plants from F.Y & S.Y. B. Sc Families to be included
- C-Anatomy Anomalous Secondary Growth
- **D** As per slip

E, **F**, **G** & **H**– Fossils, Types of Stomata, Morphology of flower & Morphology of Fruits Studied in Theory – in random order

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP7) FORMS AND FUNCTION III (USBOP503) (For 3 Units) Practical Paper – III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	Q.1 Make a smear preparation of material 'A' and show the slide to the Examiner. Comr	
	your observation / Expose the giant Chromosomes from the salivary glands of Chironomous	
	larva.	08
Q. 2	Perform the experiment 'B' allotted to you (Physiology).	12
Q. 3	Perform the experiment 'C' allotted to you (Ecology).	12
Q. 4	Calculate the of the given solution 'D' to prepare the required solution.	07
Q. 5	Identify and describe slide/specimen 'E'& 'F'.	06
Q.6.	Viva voce (based on Paper II and Paper III).	05

KEY

- **B** Physiology experiment.
- C-Ecology experiment.
- **D** Plant Tissue Culture.
- E & F– Multiple shoot culture, Hairy root culture, Somatic embryogenesis, Amino acid sequencing.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER VI (USBOP8) Plant Diversity III (USBOP601) Practical Paper – I

Duration: 9:00 am to 01:00 pm

Max. Marks:50

1	Identify, classify and describe specimen 'A' and 'B'. Sketch neat and labelled diagrams of	
	Morphological/Microscopical structures seen in the specimens.	12
2	Identify, classify and describe specimen 'C' and 'D'. Sketch neat and labeled diagrams of	
	Morphological/Microscopical structures seen in the specimens.	12
Q.3	Identify, classify and describe specimen 'E'. Sketch neat and labeled diagrams of	
	Morphological/Microscopical structures seen in the specimens.	06
Q.4	Identify and describe slides/specimen 'F', 'G' 'H', 'I' & 'J'.	15
Q.5	Journal.	05

KEY

A & B-Bryophytes: Marchantia, Pellia & Sphagnum

C & D-Pteridophytes: Lycopodium, Equisetum, Adiantum & Marsilea

E- Gymnosperm: Thuja, Gnetum & Ephedra

F, G, H, I & J– Economic importance of Bryophytes, Economic importance of Pteridophytes Types of Sporophytes in Bryophyta, Types of Sori in Pteridophytes, Soral arrangement in Pteridophytes, Economic importance of Gymnosperms. (In random order)

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER VI (USBOP8) Plant Diversity IV (USBOP602) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1 A.	Classify specimen 'A' up to its family giving reasons. Give floral formula. Sketch neat and	
	labeled L.S. of flower and T.S. ovary.	08
Q. 1.B.	Identify genus and species of specimen 'B' using flora.	04
Q. 2	Make a stained preparation of specimen 'C' and comment on its ecological anatomy.	06
Q.3.A	Calculate Simpson's Diversity Index from the given data 'D'.	08
Q.3.B	Mark the Phytogeographic region 'E' in the map of India and Comment on the same.	05
Q.4	Identify and describe slide/specimen 'F', 'G' & 'H'.	09
Q.5	Field Report.	05
Q.6	Viva voce (based on Paper I and Paper II)	05

KEY

- A-Families of T.Y.B.Sc Sem VI only
- B-Plants from F.Y., S.Y. & T.Y. B. Sc. (Sem V Families to be included).
- **C** Ecological anatomy.

F, **G** & **H**– Economic importance of specimen from prescribe families (Sem VI only), Morphological Peculiarities of prescribed families (Sem – VI only), Embryology. (In random order)

UNIVERSITY OF MUMBAI T.Y.B.Sc. BOTANY SEMESTER VI (USBOP9) FORM AND FUNCTION III (USBOP603) PRACTICAL III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	Perform the experiment 'A' allotted to you.	10
Q.2	Perform the experiment 'B' allotted to you.	10
Q.3	Make a squash preparation to show the stage of mitosis from the pre-treated root tips 'C'.	05
Q.4	Construct a chromosome map from the given data 'D' / Identify the type of mutation and	
	comment on them (any two types of mutations)	10
Q.5	From the given data/ material 'E' determine test of significance using students t-test/	
	Regression Analysis /ANOVA	10
Q.6	Journal.	05

KEY

- A-Plant Biochemistry Experiment.
- **B** Plant Physiology Experiment.

UNIVERSITY OF MUMBAI T.Y.B.Sc. BOTANY SEMESTER VI (USBOP9) CURRENT TRENDS IN PLANT SCIENCE II (USBOP604) PRACTICAL IV

Duration: 9:00 am to 01:00 pm		Max. Marks:50	
Q.1	Perform the DNA barcoding of plant material using given data 'A'.	12	
	OR		
	Perform DNA sequencing by Sanger's method of the given sequence 'A'.	12	
Q.3	Perform the experiment 'B' allotted to you.	12	
Q.4	Perform the given analysis of data 'C' using computer (Bioinformatics).	08	
Q.5	Prepare the squash/Jam/jelly/pickle from the given material 'D' .	12	
Q.6	Viva voce. (Based on Paper III and Paper IV)	06	

KEY

B-TLC of Patchouli or Citronella / Saponification value

 $C-BLAST \ / \ Multiple \ Sequence \ Alignment \ (MSA) \ / \ Phylogenetic \ Analysis \ / \ RASMOL \ / \ SPDBV$

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP10) Plant Diversity IV (USBOP602) (For 3 Units) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1A.	Classify specimen 'A' up to its family giving reasons. Give floral formula. Sketch nea	t and
	labeled L.S. of flower and T.S. ovary.	08
Q. 1.B.	Identify genus and species of specimen 'B' using flora.	04
Q. 2	Make a stained preparation of specimen 'C' and comment on its ecological anatomy.	06
Q.3.A	Calculate Simpson's Diversity Index from the given data 'D'.	08
Q.3.B	Mark the Phytogeographic region 'E' in the map of India and Comment on the same.	05
Q.4	Identify and describe slide/specimen 'F', 'G' & 'H'.	09
Q.5	Field Report.	05
Q.6	Journal	05

KEY

- A-Families of T.Y.B.Sc Sem VI only
- B-Plants from F.Y., S.Y. & T.Y. B. Sc.(Sem V Families to be included).
- **C** Ecological anatomy.

F, **G** & **H**– Economic importance of specimen from prescribe families (Sem VI only), Morphological Peculiarities of prescribed families (Sem – VI only), Embryology. (In random order)

UNIVERSITY OF MUMBAI T.Y.B.Sc. BOTANY SEMESTER VI(USBOP10) FORM AND FUNCTION III (USBOP603) (For 3 units) PRACTICAL III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	Perform the experiment 'A' allotted to you.	10
Q.2	Perform the experiment 'B' allotted to you.	10
Q.3	Make a squash preparation to show the stage of mitosis from the pre-treated root tips 'C'.	06
Q.4	Construct a chromosome map from the given data 'D'/ Identify the type of mutation and	
	comment on them (any two types of mutations)	10
Q.5	From the given data/ material 'E' determine test of significance using students t-test/	
	Regression Analysis /ANOVA	09
Q.6	Viva-voce. (based on Paper II and Paper III)	05

KEY

- A– Plant Biochemistry Experiment.
- **B** Plant Physiology Experiment.

ReferenceBooks

- 1. A handbook of Ethnobotany by S.K. Jain, V. Mudgal
- 2. Plants in folk religion and mythology (Contribution to Ethnobotany by S.K.Jain3rdRev.Ed).
- 3. Introduction to Plant Physiology by Noggle and Fritz, Prentice Hall Publishers(2002)
- 4. Plant Physiology by Salisbury and Ross CBS Publishers
- 5. Plant Physiology by Taiz and Zeiger Sinauer Associates Inc. Publishers, 2002
- 6. Genetics by Russel Peter Adison Wesley Longman Inc. (5thedition)
- 7. An introduction to Genetic analysis Griffith Freeman and Company(2000)
- 8. Fundamentals of Biostatics by Rastogi, Ane Books Pvt. Ltd.(2009).
- 9. College Botany Vol I and II by Gangulee Das and Dutta Central Education enterprises.
- 10. Cryptogamic Botany Vol I and II by G M Smith, Mcg raw Hill
- 11. Industrial Microbiology by Cassida, New Age International, New Delhi
- 12. Industrial Microbiology Mac Millan Publications, New Delhi
- 13. Physiological Plant Anatomy by Haberlandt, Mac Millan and Company
- 14. Ayurveda Ahar by P H Kulkarni
- 15. Pharmacognosy by Kokate, Purohit and Gokhale, Nirali Publications
- 16. Bioinformatics by Sunder Rajan
- 17. Instant Notes on Bioinformatics by Westhead (2002), Taylor Francis Publications.
- 18. Bioinformatics by Ignasimuthu
- DNA barcoding plants: taxonomy in a new perspective 2010. K Vijayan and C H Tsou, Current Science, 1530–1541.
- 20. Introduction to Biostatistics by P K Banerjee, Chand Publication.
- 21. Plant Biotechnology by K. Ramawat
- 22. Practical Biochemistry by David Plummer, McGraw Hill Publ.
- 23. Economic Botany by A F Hill, TATA McGRAW-HILL Publishing Co. Ltd.
- 24. Post-Harvest Technology by Verma and Joshi, Indus Publication
- 25. Embryology of Plants by Bhojwani and Bhatnagar
- 26. Pollen Morphology and Plant Taxonomy by G. Erdtman, Hafner Publ. Co., N.Y.
- 27. A text Book of Palynology by K Bhattacharya, New Central Book Agency Pvt. Ltd., London
- 28. An introduction to Embryology of Angiosperms by P Maheshwari, McGraw Hill Book Co.
- 29. Plant Systematics by Gurcharan Singh, Oxford and IBH Publ.
- 30. Taxonomy of Vascular Plants by Lawrence George, H M, Oxford and IBH Publ.